Shape, Velocity, and Exact Controllability for the Wave Equation

Sergei Avdonin, Julian Edward, Karlygash Nurtazina


A new method to prove exact controllability for the wave equation is demonstrated and discussed on several examples. The method of proof first uses a dynamical argument to prove shape controllability and velocity controllability, thereby solving their associated moment problems. This enables one to solve the moment problem associated to exact controllability.

Ключові слова

Exact controllability; wave equation; shape controllability; velocity controllability; moment problem

Повний текст:

PDF (English)


F. Al-Musallam, S A. Avdonin, N. Avdonina, J. Edward, Control and inverse problems for networks of vibrating strings with attached masses, Nanosystems: Physics, Chemistry, and Mathematics, 7 (2016), 835–841.

S. Avdonin, Control problems on quantum graphs. In: Analysis on Graphs and Its Applications, Proceedings of Symposia in Pure Mathematics, AMS, 77 (2008), 507–521

S. Avdonin, Control, observation and identification problems for the wave equation on metric graphs, IFAC-PapersOnLine, 52 (2019), 52–57.

S.A. Avdonin, M.I. Belishev, S.A. Ivanov, Matrix inverse problem for the equation utt −uxx +Q(x)u = 0, Math. USSR Sbornik, 7 (1992), 287–310.

S. Avdonin, J. Edward, Exact controllability for string with attached masses, SIAM J. Optim. Cont., 56 (2018), 945–980.

S. Avdonin, J. Edward, Controllability for string with attached masses and Riesz bases for asymmetric spaces, Mathematical Control & Related Fields, 9 (2019), 453–494.

S. Avdonin, J. Edward, An inverse problem for quantum trees, Networks and Heterogeneous Media, 16 (2) (2021), 317–339.

S. Avdonin, J. Edward, G. Leugering, Exact controllability for the wave equation on a graph with cycle and delta-prime vertex conditions, (2022), submitted, arXiv:2210.03790.

S. Avdonin, J. Edward, Y. Zhao, Shape, velocity, and exact controllability for the wave equation on a graph with cycle, St. Petersburg Math. Journal, (2022) accepted, arXiv:2210.03344.

S.A. Avdonin, S.A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New York, London, Melbourne, 1995.

S.A. Avdonin, S.A. Ivanov, D.L. Russell, Exponential bases in Sobolev spaces in control and observation problems for the wave equation, Proc. Royal Soc. Edinburgh, 130A (5) (2000), 947–970.

S. Avdonin, V. Mikhaylov, The boundary control approach to inverse spectral theory, Inverse Problems, 26 (2010), 045009.

S. Avdonin, P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1–21.

S. Avdonin, S. Nicaise, Source identification problems for the wave equation on graphs, Inverse Problems, 31 (2015), 095007.

S. Avdonin, Y. Zhao, Exact controllability of the 1-D wave equation on finite metric tree graphs, Appl. Math. Optim., 83 (3) (2021), 2303–2326.

S. Avdonin, Y. Zhao, Shape, Velocity, and Exact Controllability for the Wave Equation on Graphs, Appl. Math. Optim., 85 (2) (2022),

M.I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (3) (2004), 647–672.

M.I. Belishev, A.F. Vakulenko, Inverse problems on graphs: Recovering the tree of strings by the BC-method, J. Inv. Ill-Posed Problems, 14 (2006), 29–46.

G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, (Mathematical Surveys and Monographs), American Mathematical Society: Providence, RI, USA, Vol. 186, 2013.

R. Dager, E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, in Mathematiques and Applications (Berlin), 50, Springer-Verlag, Berlin, 2006.

P. Kurasov, Quantum Graphs: Spectral Theory and Inverse Problems, Springer, 2022.

J. Lagnese, G. Leugering and E.J.P.G. Schmidt, Modelling, Analysis, and Control of Dynamical Elastic Multilink Structures, Birkhauser, Basel, 1994.

I. Lasiecka, R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon, Encyclopedia of Mathematics and its Applications, 75, Cambridge University Press, Cambridge, 2000.

J.-L. Lions, Exact controllability, perturbations and stabilization of distributed systems, Vol. 1. Exact controllability, Research in Applied Mathematics, Masson, Paris, 1988.

D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Rev., 20 (4) (1978), 639–739.

E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, Handbook of differential equations: evolutionary equations. Vol. III, 527–621, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007.

E. Zuazua, Control and stabilization of waves on 1-d networks. In: Aswini, A. (ed.) Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics, 2062, 463–493. Springer, Heidelberg, 2013.



  • Поки немає зовнішніх посилань.

Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:


Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І. 


Free counters! 

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Open Science in Ukraine - website development