Can a Finite Degenerate ‘String’ Hear Itself The Exact Solution to a Simplified IBVP
Анотація
The separation of variables based solution to a simplified (compared to that published earlier in JODEA, 28 (1) (2020), 1 – 42) initial boundary value problem for a 1D linear degenerate wave equation, posed in a space-time rectangle, has been presented in a fully complete form. Degeneracy of the equation is due to vanishing its coefficient in an interior point of the spatial segment being the side of the rectangle. For the sake of convenience, the solution is interpreted as a vibrating ‘string’. The solution obtained in the case of weak degeneracy is smooth and bounded, whereas that in the case of strong degeneracy is piece-wise smooth, piece-wise continuous and unbounded in a neighborhood of the point of degeneracy, nevertheless being satisfied some regularity conditions, including square-integrability. In both cases the travelling waves pass through the point of degeneracy, and this phenomenon is referred to as an ability of the ‘string’ to hear itself. The total energy of the ‘string’ is shown to conserve in both cases of degeneracy, provided the ends of the ‘string’ are fixed, though the above vibrating ‘string’ analogy fails in the case of strong degeneracy. The total energy conservation implies the uniqueness of the solution to the problem in both cases of degeneracy
Ключові слова
Повний текст:
PDF (English)Посилання
V. L. Borsch, On initial boundary value problems for the degenerate 1D wave equation, Journal of Optimization, Differential Equations, and their Applications (JODEA), 27 (2) (2019), 27–44.
V. L. Borsch, P. I. Kogut, G. Leugering, On an initial boundary-value problem for 1D hyperbolic equation with interior degeneracy: series solutions with the continuously differentiable fluxes, Journal of Optimization, Differential Equations, and their Applications (JODEA), 28 (1) (2020), 1 – 42.
V. L. Borsch, P. I. Kogut, The exact bounded solution to an initial boundary value problem for 1D hyperbolic equation with interior degeneracy. I. Separation of Variables, Journal of Optimization, Differential Equations and Their Applications (JODEA), 28 (2) (2020), 2 – 20.
V. L. Borsch, P. I. Kogut, Solutions to a simplified initial boundary value problem for 1D hyperbolic equation with interior degeneracy, Journal of Optimization, Differential Equations, and their Applications (JODEA), 29 (1) (2021), 1 – 31.
B. M. Budak, A. A. Samarskii, A. N. Tikhonov, A Collection of Problems on Mathematical Physics, Pergamon, London, 1964.
A. J. Jerri, The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations, Springer Science+Business Media, LLC, Dordrecht, 1998.
M. Kac, Can One Hear the Shape of a Drum?, The American Mathematical Monthly, 73 (4, part 2) (1966), 1 – 23.
P. I. Kogut, O. P. Kupenko, G. Leugering, Y. Wang, A note on weighted Sobolev spaces related to weakly and strongly degenerate differential operators, Journal of Optimization, Differential Equations and Their Applications (JODEA), 27 (2) 2019, 1 – 22.
P. I. Kogut, O. P. Kupenko, G. Leugering, On boundary exact controllability of one-dimensional wave equations with weak and strong interior degeneration, Mathematical Methods in the Applied Sciences, 45 (2) 2022, pp. 770 – 792
P. I. Kogut, O. P. Kupenko, G. Leugering, On boundary null contrtollability of strongly degenerate hyperbolic systems on star-shaped planar networks, Journal of Optimization, Differential Equations and Their Applications (JODEA), 29 (2) (2021), 92 – 118.
S. H. Storey, The Convergence of Fourier-Bessel Expansions, The Computer Journal, 10 (4) (1968), 402 – 405.
A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, Inc., NY, 1963.
G. P. Tolstov, Fourier Series, Dover, NY, 1962.
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1922.
DOI: http://dx.doi.org/10.15421/142211
Посилання
- Поки немає зовнішніх посилань.
Індексування журналу
Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:
Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І.
email: p.kogut@i.ua
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.