Discrete Processes and Chaos in Systems of Ordinary Differential Equations

Vasiliy Ye. Belozyorov, Svetlana A. Volkova


A method for constructing a one-dimensional discrete mapping describing a certain periodic process in a general system of ordinary autonomous differential equations is proposed. The resulting discrete mapping is then used to prove the existence of chaos in the original system of differential equations.

Ключові слова

system of ordinary autonomous differential equations; limit cycle; chaotic attractor; 1D exponential discrete map

Повний текст:

PDF (English)


A. C. J. Luo, Regularity and Complexity in Dynamical Systems, (Springer/ New York, Dordrecht, Heidelberg, London), 2012.

N. A. Magnitskii, Universal theory of dynamical chaos in nonlinear dissipative systems of differential equations, Communications in Nonlinear Science and Numerical Simulation, 13, (2008), 416-433.

V. Ye. Belozyorov, General method of construction of implicit discrete maps generating chaos in 3D quadratic systems of differential equations, International Journal of Bifurcation and Chaos, 24, (2014), ID 1450025-1-23.

V. Ye. Belozyorov, Exponential-algebraic maps and chaos in 3D autonomous quadratic systems, International Journal of Bifurcation and Chaos, 25, (2015), ID 1550048-1-24.

V. Ye. Belozyorov, Research of chaotic dynamics of 3D autonomous quadraic systems by their reduction to special 2D quadratic systems, Mathematical Problems in Engineering, 2015, (2015), ID 271637-1-15.

V. Ye. Belozyorov, S. A. Volkova, Role of logistic and Ricker’s maps in appearance of chaos in autonomous quadratic dynamical systems, Nonlinear Dynamics, 83, (2016), 719-729.

H. K. Khalil, Nonlinear Systems – 2nd Edition, (Prentice Hall/New-Jersy), 1996.

R. M. Crownover, Introduction to Fractals and Chaos, (Jones and Bartlett Publishers/ Boston, London), 1995.

D. V. Hoang, S. T. Kingni, V. T. Pham, A no-equilibrium hyperchaotic system and its fractional-order form, Mathematical Problems in Engineering, 2017, (2017), ID 3927184-1-11.

V. Ye. Belozyorov, On novel conditions of chaotic attractors existence in autonomous polynomial dynamical systems, Nonlinear Dynamics, 91, (2018), 2435–2452.

V. Ye. Belozyorov, D. V. Dantsev, Modeling of chaotic processes by means of antisymmetric neural ODEs, Journal of Optimization, Differential Equations and Their Applications (JODEA), 30(1), (2022), 1–41.

V. Ye. Belozyorov, S. A. Volkova, Odd and even functions in the design problem of new chaotic attractors, International Journal of Bifurcation and Chaos, 32, (2022), ID 2250218-1-26.

DOI: http://dx.doi.org/10.15421/142209


  • Поки немає зовнішніх посилань.

Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:


Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І. 

email: p.kogut@i.ua


Free counters! 

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Open Science in Ukraine - website development