Solvability Issues for Some Noncoercive and Nonmonotone Parabolic Equations Arising in the Image Denoising Problems

Peter Kogut, Yaroslav Kohut, Nataliia Parfinovych


This paper is devoted to the solvability of an initial-boundary value problem for second-order parabolic equations in divergence form with variable order of nonlinearity. The characteristic feature of the considered class of Cauchy-Neumann parabolic problem is the fact that the variable exponent p(t, x) and the anisotropic diffusion tensor D(t, x) are not well predefined a priori, but instead these characteristic depend on a solution of this problem, i.e., p = p(t, x, u) and D = D(t, x, u). Recently, it has been shown that the similar models appear in a natural way as the optimality conditions for some variational problems related to the image restoration technique. However, from practical point of view, in this case some principle difficulties can appear because of the absence of the corresponding rigorous mathematically substantiation. Thus, in this paper, we study the solvability issues of the Cauchy-Neumann parabolic boundary value problem for which the corresponding principle operator is strongly non-linear, non-monotone, has a variable order of nonlinearity, and satisfies a nonstandard coercivity and boundedness conditions that do not fall within the scope of the classical method of monotone operators. To construct a weak solution, we apply the technique of passing to the limit in a special approximation scheme and the Schauder fixed-point theorem.

Ключові слова

Weak solution; parabolic equation; variable order of nonlinearity; noncoercive problem; compensated compactness technique

Повний текст:

PDF (English)


L. Afraites, A. Hadri, A. Laghrib, A denoising model adapted for impulse and Gaussian noises using a constrained-PDE, Inverse Problems, 36(2) (2020), Id:025006.

L. Afraites, A. Hadri, A. Laghrib, M. Nachaoui, A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification, Inverse Problems and Imaging, 16(4) (2022), 827–870.

Yu.A. Alkhutov, V.V. Zhikov, Existence theorems for solutions of parabolic equations with variable order of nonlinearity, Proceedings of the Steklov Institute of Mathematics, 270 (2010), 15–26.

Yu.A. Alkhutov, V.V. Zhikov, Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent, Sbornik : Mathematics, 205 (3) (2014), 307–318.

L. Alvarez, P.-L. Lions, J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal,, 29 (1992), 845–866.

B. Andreianov, M. Bendahmane, S. Ouaro, Structural stability for nonlinear elliptic problems of the p(x)- and p(u)-laplacian kind, 2009, HAL Id: hal-00363284.

S. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Studies in Differential Equations, Vol. 4, Atlantis Press, 2015.

S. Antontsev, V. Zhikov, Higher integrability for parabolic equations of p(x, t)-Laplacian type, Advances in Differential Equations, 10 (9) (2005), 1053–1080.

V. Babenko, O. Kovalenko, N. Parfinovych, On approximation of hypersingular integral operators by bounded ones, J. Math. Anal. Appl., 513 (2):126215 (2022),

V.F. Babenko, N.V. Parfinovych, Kolmogorov type inequalities for norms of Riesz derivatives of multivariate functions and some applications, Proc. Steklov Inst. Math., 277 (2012),9–20.

V.F. Babenko, N.V. Parfinovych, Inequalities of the Kolmogorov type for norms of Riesz derivatives of multivariate functions and some of their applications, J. Math. Sci., 187 (2012),9–21.

P. Blomgren, T.F. Chan, P. Mulet, C. Wong, Total variation image restoration: Numerical methods and ex- tensions, In In Proceedings of the IEEE International Conference on Image Processing, III IEEE (1997), 384–387.

M. Bokalo, Initial-boundary value problems for anisotropic parabolic equations with variable exponents of the nonlinearity in unbounded domains with conditions at infinity, Journal of Optimization, Differential Equations and Their Applications (JODEA), 30 (1) (2022), 98–121.

F. Catt´e, P.L. Lions, J-M. Morel, T. Coll, Image Selective Smoothing and Edge Detection by Nonlinear Diffusion, SIAM Journal on Numerical Analysis, 29 (1) (1992), 182–193.

Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. of Appl. Math., 66 (4) (2006), 1383–1406.

C. D’Apice, U. De Maio, P.I. Kogut, An indirect approach to the existence of quasi-optimal controls in coefficients for multi-dimensional thermistor problem, in “Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics”, Editors: Sadovnichiy, Victor A., Zgurovsky, Michael (Eds.). Springer. Chapter 24, (2020), 489–522.

C. D’Apice, P.I. Kogut, R. Manzo, M.V. Uvarov,, Variational model with nonstandard growth conditions for restoration of satellite optical images via their co-registration with Synthetic Aperture Radar, European Journal of Applied Mathematics, Published online by Cambridge University Press: 11 March 2022,

C. D’Apice, P.I. Kogut, R. Manzo, M.V. Uvarov, Variational Model with Nonstandard Growth Conditions for Restoration of Satellite Optical Images Using Synthetic Aperture Radar, Europian Journal of Applies Math., Published online by Cambridge University Press: 11 March 2022,

C. D’Apice, P.I. Kogut, R. Manzo, M.V. Uvarov, On Variational Problem with Nonstandard Growth Conditions and Its Applications to Image Processing, Proceeding of the 19th International Conference of Numerical Analysis and Applied Mathematics, ICNAAM 2021, 20?26 September 2021, Location: Rhodes, Greece.

D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkh¨auser, New York, 2013.

R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol.5, Springer-Verlag, Berlin Heidelberg, 1985.

L. Diening, P. Harjulehto, P. Ha¨sto¨ , M. Ru˙ zˆicˆk, Lebesgue and Sobolev Spaces with Variable Exponents. Springer, New York, 2011.

T. Horsin, P. Kogut, Optimal L2-control problem in coefficients for a linear elliptic equation. I. Existence result, Mathematical Control and Related Fields, 5 (1) (2015), 73–96.

G. Gilboa, S. Osher, Nonlocal operators with applications to image processings, Multiscale Modeling & Simulation, 7(3) (2008), 1005–1028.

D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic, New York, 1980.

P. Khanenko, P. Kogut, M. Uvarov, On Variational Problem with Nonstandard Growth Conditions for the Restoration of Clouds Corrupted Satellite Images, CEUR Workshop Proceedings, the 2nd International Workshop on Computational and Information Technologies for Risk-Informed Systems, CITRisk-2021, September 16-17, 2021, Kherson, Ukraine, Volume 3101, 6–25, 2021.

P.I. Kogut, On optimal and quasi-optimal controls in coefficients for multidimensional thermistor problem with mixed Dirichlet-Neumann boundary conditions, Control and Cybernetics, 48(1) (2019), 31–68.

P. Kogut, Ya. Kohut, R. Manzo, Fictitious Controls and Approximation of an Optimal Control Problem for Perona-Malik Equation, Journal of Optimization, Differential Equations and Their Applications (JODEA), 30 (1) (2022), 42–70.

P.I. Kogut, O.P. Kupenko, Approximation Methods in Optimization of Nonlinear Systems, De Gruyter Series in Nonlinear Analysis and Applications 32, Walter de Gruyter GmbH, Berlin, Boston, 2019.

P.I. Kogut, O.P. Kupenko, N.V. Uvarov, On increasing of resolution of satellite images via their fusion with imagery at higher resolution, J. of Optimization, Differential Equations and Their Applications (JODEA), 29(1) (2021), 54–78.

P.I. Kogut, R. Manzo, On vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws, Journal of Dynamical and Control Systems, 19(2) (2013), 381–404.

A. Ladyshenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasi linear Equation of Parabolic Type. American Mathematical Society, Providence, RI, 1968.

K.S.C. Lellmann, J. Papafitsoros, D. Spector, Analysis and application of a nonlocal hessian, Journal on Imaging Sciences, 8(4) (2015), 2161–2202.

I. El Mourabit, M. El Rhabi, A. Hakim, A. Laghrib, E. Moreau, A new denoising model for multi-frame super-resolution image reconstruction, Signal Processing, 132 (2017), 51–67.

L. Nirenberg, Topics in Nonlinear Analysis, Lecture Notes, New York University, New York, 1974.

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 116–162.

S.Ouaro, N. Sawadogo, (2021). Structural Stability of Nonlinear Elliptic p(u)-Laplacian Problem with Robin Type Boundary Condition. In: Studies in Evolution Equations and Related Topics. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, Springer, Cham, 2021, 69–111.

P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Machine Intelligence, 12 (1990), 161–192.

V. R˘adulescu, D. Repovˇs, Partial differential equations with variable exponents: variational methods and qualitative analysis, CRC Press, Boca Raton, London, New York, 2015.

J Simon, Compact sets in the space Lp(0, T;B), Ann. Mat. pura Appl., 146 (1987), 65–96.

J. Weickert, Anisotropic Diffusion in Image Processing, ECMI, B.G. Teubner Stuttgart, 1998.

V.V. Zhikov, Solvability of the three-dimensional thermistor problem, Proceedings of the Steklov Institute of Mathematics 281 (2008), 98–111.

V.V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, Journal of Mathematical Sciences, 173:5 (2011), 463–570.

V.V. Zhikov, On the weak convergence of fluxes to a flux, Doklady Mathematics, 81:1 (2010), 58–62.

V.V. Zhikov, S.E. Pastukhova, Lemmas on compensated compactness in elliptic and parabolic equations, Proceedings of the Steklov Institute of Mathematics, 270 (2010), 104–131.



  • Поки немає зовнішніх посилань.

Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:


Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І. 


Free counters! 

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Open Science in Ukraine - website development