Initial-Boundary Value Problems for Anisotropic Parabolic Equations with Variable Exponents of the Nonlinearity in Unbounded Domains with Conditions at Infinity

Mykola Bokalo

Анотація


We deal with the initial-boundary value problems with some restrictions at
infinity for linear and nonlinear anisotropic parabolic second-order equations in unbounded domains with respect to the spatial variables. The weak solutions of our problem in Lebesgue and Sobolev spaces with variable exponents is considered. We prove theorems on the existence and uniqueness of the weak solutions using the method based on Saint- Venant principle, and the monotonicity method. Moreover, we obtain estimate of the weak solutions.


Ключові слова


parabolic equation; variable exponent of nonlinearity; Lebesgue space with variable exponent; Sobolev space with variable exponent; unbounded domain; Saint- Venant principle, monotonicity method

Повний текст:

PDF (English)

Посилання


A.N. Tikhonov, Th´eoremes d’unicit´e pour l’´equation de la chaleur, Mat. Sb., 42 (2) (1935), 199–216.

S. T¨acklind, Sur les classes quasianalytiques des solutions des ´equations aux d´eriv´es partielles du type parabolique, Nova Acta Regiae Soc. Sci. Upsal. Series 4, 10 (3) (1936), 3–55.

O.A. Oleinik, G.A. Iosifyan, An analog of Saint-Venant principle and uniqueness of the solutions of the boundary-value problems in unbounded domains for parabolic equations, Usp. Mat. Nauk, 31 (6) (1976), 142–166.

O.A. Oleinik, E.V. Radkevich, The method of introducing a parameter for the investigation of evolution equations, Usp. Mat. Nauk, 33 (5) (1978), 7–72.

Ph. Benilan, M.G. Grandall, M. Pierre, Solutions of the porous medium equations in Rn under optimal conditions on initial values, Indiana Univ. Math. J., 33 (1) (1984), 51–87.

A.E. Shishkov, The solvability of the boundary-value problems for quasilinear elliptic and parabolic equations in unbounded domains in the classes of functions growing at the infinity, Ukr. Math. J., 47 (2) (1985), 277–289.

A.E. Shishkov, V.F. Akulov, Analogs of Teklind uniqueness classes for solutions of initial-boundary problems for some quasilinear degenerate parabolic equations, Reports of the Academy of Sciences of UkrSSR. Ser. A, 5 (1989), 23–25.

E. Di Benedetto, M.A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1) (1989), 187–224.

A.L. Gladkov, The Cauchy problem in classes of increasing functions for the equation of filtration with convection, Math. Sbornik, 186 (6) (1995), 35–56.

H. Br´ezis, Semilinear equations in RN without conditions at infinity, Appl. Math. Optim., 12 (3) (1984), 271–282.

M.A. Herrero, M. Pierre, The Cauchy problem for ut um = 0 when 0 < m < 1, Trans. Am. Math. Soc., 291 (1) (1985), 145–158.

F. Bernis, Elliptic and parabolic semilinear parabolic problems without conditions at infinity, Arch. Rational Mech. Anal., 106 (3) (1989), 217– 41.

E. Di Benedetto, M.A. Herrero, Non-negative solutions of the evolution p- Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2, Arch. Rational Mech. Anal., 111 (3) (1990), 225–290.

M.M. Bokalo, On unique solvability of boundary value problems for semilinear parabolic equations in unbounded domains without conditions at infinity, Siberian Math. J., 34 (4) (1993), 620–627.

M.M. Bokalo, Boundary value problems for semilinear parabolic equations in unbounded domains without conditions at infinity, Siberian Math. J., 37 (5) (1996), 860–867.

L. Boccardo, Th. Gallou¨et, J.L. Vazquez, Solutions of nonlinear parabolic equations without growth restrictions on the data, Electronic J. Diff. Eq., 60 (2001), 1–20.

A. Gladkov, M. Guedda, Diffusion-absorption equation without growth restrictions on the data at infinity, J. Math. Anal. Appl., 274 (1) (2002), 16–37.

C. Marchi, A. Tesei, Higher-order parabolic equations without conditions at infinity, J. Math. Anal. Appl., 269 (2002), 352–368.

N.M. Bokalo, The well-posedness of the first boundary value problem and the Cauchy problem for some quasilinear parabolic systems without conditions at infinity, J. Math. Sci., 135 (1) (2006), 2625–2636.

M. M. Bokalo, O. M. Buhrii, N. Hryadil, Initial-boundary value problems for nonlinear elliptic-parabolic equations with variable exponents of nonlinearity in unbounded domains without conditions at infinity, Nonlinear Analysis. Elsevier. USA, 192 (2020), 1–17.

M. Ru˙ zˇicˇka, Electroreological fluids: modeling and mathematical theory, Springer- Verl., Berlin, 2000.

V. N. Samokhin, On a class of equations that generalize equations of polytropic filtration, Diff. Equat., 32 (5) (1996), 648–657.

O. Buhrii, S. Lavrenyuk, Initial boundary-value problem for parabolic equation of polytropic filtration type, Visn. Lviv Univ (Herald of Lviv University). Ser. Mech.- Math., 56 (2000), 33–43.

M.M. Bokalo, I.B. Pauchok, On the well-posedness of a Fourier problem for nonlinear parabolic equations of higher order with variable exponents of nonlinearity, Matematychni Studii, 26 (1) (2006), 25–48.

M. Bokalo, O. Domanska, On well-posedness of boundary problems for elliptic equations in general anisotropic Lebesgue-Sobolev spaces, Matematychni Studii, 28 (1) (2007), 77–91.

S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Studies in Diff. Eq., Vol. 4, Paris: Atlantis Press, 2015.

V. R˘adulescu, D. Repovˇs, Partial differential equations with variable exponents: variational methods and qualitative analysis, CRC Press, Boca Raton, London, New York, 2015.

M.M. Bokalo, O.M. Buhrii, R.A. Mashiyev, Unique solvability of initialboundary- value problems for anisotropic elliptic-parabolic equations with variable exponents of nonlinearity, J. Nonl. Evol. Eq. Appl., 6 (2013), 67–87.

O. Buhrii, N. Buhrii, Nonlocal in time problem for anisotropic parabolic equations with variable exponents of nonlinearities, J. Math. Anal. Appl., 473 (2019), 695–711.

L. Diening, P. Harjulehto, P. Ha¨sto¨ , M. Ru˙ zˇicˇka, Lebesgue and Sobolev spaces with variable exponents, Springer, Heidelberg, 2011.

N.M. Bokalo, Energy estimates for solutions and unique solvability of the Fourier problem for linear and quasilinear parabolic equations, Diff. Equat., 30 (8) (1994), 1226–1234.

V.A. Galactionov, A.E. Shishkov, Saint-Venant’s principle in blow-up for higher-order quasilinear parabolic equations, Proc. R. Soc. Edinb. Sect. A, Math, 133 (2003), no. 5, 1075–1119.

J.-L. Lions Quelques m´ethodes de r´esolution des probl`emes aux limites non lin´eaires. Paris: Dunod, 1969.




DOI: http://dx.doi.org/10.15421/142205

Посилання

  • Поки немає зовнішніх посилань.



Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:

                 


Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І. 

email: p.kogut@i.ua

www.dnu.dp.ua


Free counters! 

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.


Open Science in Ukraine - website development