Stability of Neural Ordinary Differential Equations with Power Nonlinearities

Vasiliy Ye. Belozyorov, Danylo V. Dantsev

Анотація


The article presents a study of solutions of ODEs system with a special nonlinear part, which is a continuous analogue of an arbitrary recurrent neural network (neural ODEs). As a nonlinear part of the mentioned system of differential equations, we used sums of piecewise continuous functions, where each term is a power function. (These are activation functions.) The use of power activation functions (PAF) in neural networks is a generalization of well-known the rectified linear units (ReLU). In the present time ReLU are commonly used to increase the depth of trained of a neural network. Therefore, the introduction of PAF into neural networks significantly expands the possibilities of
ReLU. Note that the purpose of introducing power activation functions is that they allow one to obtain verifiable Lyapunov stability conditions for solutions of the system differential equations simulating the corresponding dynamic processes. In turn, Lyapunov stability is one of the guarantees of the adequacy of the neural network model for the process under study. In addition, from the global stability (or at least the boundedness) of continuous analog solutions it follows that learning process of the corresponding neural network will not diverge for any training sample.

Ключові слова


ordinary autonomous differential equations; power activation function; neural network; Lyapunov stability

Повний текст:

PDF (English)

Посилання


V. Ye. Belozyorov, Ye. M. Kosariev, M. M. Pulin, V. G. Sychenko, V. G. Zaytsev. A new mathematical model of dynamic process in direct current traction power supply system, Journal of Optimization, Differential Equations and Their Applications (JODEA), 27(1) (2019), 21 – 55.

V. Ye. Belozyorov, D. V. Dantsev, S. A. Volkova. On Equivalence of Linear Control Systems and Its Usage to Verification of the Adequacy of Different Models for A Real Dynamic Process, Journal of Optimization, Differential Equations and Their Applications (JODEA), 28(1)(2020), 43 – 97.

J. Jia, A. R. Benson, Neural jump stochastic differential equations, arXiv preprint arXiv:1905.10403v3[cs.LG], (2020), 1 – 14.

B. Chang, M. Chen, E. Haber, E.D. Chi, Antisymmetric RNN: A Dynamical System Viev on Recurrent Neural Networks, In conference ICLR, May 6 - May 9, New Orleans, Louisiana, USA, (2019), 1 – 15.

R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, arXiv preprint arXiv:1806.07366v5[cs.LG], (2019), 1 – 18.

E. Haber, L. Ruthotto, Stable Architectures for Deep Neural Networks, arXiv preprint arXiv: 1705.03341v1[cs.LG], (2019), 1 – 23.

S. Haykin, Neural Networks. A Comprehensive Foundation, Second Edition, Pearson Education, Prentice Hall, 2005.

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press Cambridge, Massachusetts, London, England, 2007.

H. K. Khalil, Nonlinear Systems – 2nd Edition, (Prentice Hall/New-Jersy), 1996.

J. Liang, W. Song, M. Wang, Stock Price Prediction Based on Procedural Neural Networks, Advances in Artificial Neural Systems, 2011, 2011, Article ID 814769, 11 pages.

S. T. Piantadosi, Zipf 0s word frequency law in natural language: a critical review and future directions. Psychonomic bulletin and review, 21(5), (2014), 1112 –1130.

J. A. Sjogren. Homogeneous Systems and Euclidean Topology, In: SIAM Conference on Applied Algebraic Geometry (AG17), July 31 – August 4, Georgia Tech, Atlanta GA, USA, (2017), 1 – 20.

S. Sonoda, N. Murata, Neural network with unbounded activation functions is universal approximator, Applied and Computational Harmonic Analysis, 43, 2017, pp. 233 – 268.

N.-E. Tatar, Hopfield neural networks with unbounded monotone activation functions, Hindawi Publishing Corporation. Advances in Artificial Neural Systems, 2012, 2012, 571358-1 – 5.

Z. Wang, J. Liang, Y. Liu, Mathematical Problems for Complex Networks, Mathematical Problems in Engineering, 2012, 2012, Article ID 934680, 5 pages.

H. Zhang, X. Gao, J. Unterman, T. Arodz, Approximation capabilities of neural ordinary differential equations, arXiv preprint arXiv: 907.12998v1[cs.LG], (2019), 1 – 11.




DOI: http://dx.doi.org/10.15421/1420O5

Посилання

  • Поки немає зовнішніх посилань.



Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:

                 


Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І. 

email: p.kogut@i.ua

www.kdr.dp.ua

www.dnu.dp.ua


Free counters! 

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.


Open Science in Ukraine - website development