ON INITIAL BOUNDARY VALUE PROBLEMS FOR THE DEGENERATE 1D WAVE EQUATION

Vladimir V. Borsch

Анотація


Initial boundary value problems in space-time rectangle for the following linear inhomogeneous degenerate wave equation of the second order smooth coefficient function a(x) vanishes in single points of segment.
The well-posedness of the initial boundary value problems is achieved using some approaches to regularization of the equation and the theory of characteristics. The problems for wave equation are then reduced to problems for hyperbolic balance laws 2 and 3 of partial differential equations of the first order. Weak solutions to the problems are obtained using proper numerical methods.
Results obtained for some approaches to regularization are presented.


Ключові слова


degenerate wave equations; the theory of characteristics

Повний текст:

PDF (English)

Посилання


S. R. Chakravarthy, D. A. Anderson, M. D. Salas, The split coefficient matrix method for hyperbolic systems of gas dynamic equations, AIAA Paper, 80-268 (1980).

S. R. Chakravarthy, Euler equations implicit schemes and boundary conditions, AIAA J., 21(5) (1983), 699 – 706.

A. Jeffrey, T. Taniuti, Non-linear wave propagation with applications to physics and magnetohydrodynamics , Academic Press, NY, London, 1964.

P. I. Kogut, O. P. Kupenko, G. Leugering, On existence of facilitated solutions to an optimal control problem for very strong degenerate wave equation, (in press).

V. P. Kolgan, Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics, Scientific Notes of TsAGI, (3)(1972), 68 – 77.

B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method, J. Comput. Phys., 32(1) (1979), 101 – 136.

B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method, J. Comput. Phys., 135(2) (1997), 229 – 248.

B. van Leer, A historical oversight: Vladimir P. Kolgan and his high-resolution scheme, J. Comput. Phys., 230(7), (2011), 2378 – 2383.

R. W. MacCormack, The effect of viscosity in hypervelocity impact cratering, AIAA Paper, 69-354 (1969).

R. W. MacCormack, The effect of viscosity in hypervelocity impact cratering, In: D. A. Caughey, M. M. Hafez (Eds.), Frontiers of Computational Fluid Dynamics 2002, World Scientific, New Jersey, London, 2001, 27 – 43.

J. L. Steger, R. Warming, Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods, J. Comput. Phys., 40(2), (1981), 263 – 293.

G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, NY, 1974.




DOI: http://dx.doi.org/10.15421/141906

Посилання

  • Поки немає зовнішніх посилань.



Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:

                 


Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І. 

email: p.kogut@i.ua

www.dnu.dp.ua


Free counters! 

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.


Open Science in Ukraine - website development