A NEW MATHEMATICAL MODEL OF DYNAMIC PROCESSES IN DIRECT CURRENT TRACTION POWER SUPPLY SYSTEM

Vasiliy Ye. Belozyorov, Yevhen M. Kosariev, Mykola M. Pulin, Viktor G. Sychenko, Vadym G. Zaytsev

Анотація


A new autonomous 4D nonlinear model with two nonlinearities describing
the dynamics of change of voltage and current in the contact railway electric network is offered. This model is a connection of two 2D oscillatory circuits for current and voltage in the contact electric network. In the found system for the defined values of parameters an existence of limit cycles is proved. By introduction of new variables this system can be reduced to 5D system only with one quadratic nonlinearity. The constructed model may be used for the control by voltage stability in a direct current power supply system.


Ключові слова


Time series; polynomial models; chaos; four-dimensional chaotic system; time-delayed embedding; multidimensional recurrence quantification analysis; voltage stabilization

Повний текст:

PDF (English)

Посилання


V. Sychenko, D. Bosiy, Y. Kosariev, Improving the quality of voltage in the system of traction power supply of direct current, The Archives of Transport, 35(2015), 63–70.

H. Ibrahim, A. Ilinca, J. Perron, Energy Storage Systems. Characteristics and Comparisons, Renewable and Sustainable Energy Reviews, 12(2008), 1221–1250.

Z. Tian, S. Hillmansen, C. Roberts, P. Weston, I. Chen, N. Zhao, S. Su, T. Xin, Modeling and Simulation of DC railway traction systems for energy saving, Intelligent Transportation Systems (IITSC), IEEE 17th International Conference, Qingdao, China(2014), 2354–2359.

V. Belozyorov, V. Zaytsev, Recurrence analysis of time series generated by 3D autonomous quadratic dynamical system depending on parameters, Modeling, Dnipropetrovsk University Press, Dnipropetrovsk, 24(2016), 56–70.

R. V. Donner, Y. Yong Zou, Y. F. Donges, N. Marwan, J. Kurths, Recurrence networks - a novel paradigm for nonlinear time series analysis, New Journal of Physics, 12(2010), Article ID 033025, 40 pages.

J.-P. Eckmann, S. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems, Europhysics Letters, 4(1987), 973–977.

F. K. Fuss, A robust algorithm for optimization and customization of fractal dimensions of time series modified by nonlinearly scaling their time derivatives: mathematical theory and practical applications, Computational and Mathematical Methods in Medicine, 2013(2913), Article ID 178476, 19 pages.

H. Kantz, T. Schreiber, Nonlinear Time Series Analysis - 2nd Edition, Cambridge University Press, Cambridge, 2004.

F. Takens, Detecting strange attractors in turbulence, Lecture Notes in Mathematics , Springer-Verlag, NY, Berlin, 898(1981), 366–381.

C. L. Webber, N. Marwan (eds), Reccurence Quantification Analysis. Theory and Best Practice, Springer, NY, Dordrecht, Heidelberg, London, 2015.

Y.-C. Lai, N. Ye, Recent developments in chaotic time series analysis, Int. J. Bifurcation and Chaos,13(2003), 1383–1422.

N. Marwan, M. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems, Physics Reports, 438(2007), 237–329.

N. Marwan, How to avoid pitfalls in recurrence plot based data analysis, International Journal of Bifurcation and Chaos, 21(2011), 1003–1017.

A. P. Shultz, Y. Zou, N. Marwan, M. T., Turvey, Local minima-based recurrence plots for continuous dynamical systems, International Journal of Bifurcation and Chaos, 21(2011), 1065–1075.

J. P. Zbilut, C. I. Webber, Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A, 171(1992), 199–203.

M. Li, Fractal time series – a tutorial review, Mathematical Problems in Engineering, 2010(2019), Article ID 157264, 26 pages.

Y. H. Li, X. J. Tian, X. Q. Li, Nonlinear second-order model and equilibrium point characteristic analysis of DC traction power supply system, ISRN Applied Mathematics, 2013(2013), Article ID 981692, 8 pages.

Z. Liu, Chaotic time serias analysis, Mathematical Problems in Engineering, 2010(2010), Article ID 720190, 31 pages.

H. Poincare, Sur la probleme des trois corps et les equations de la dynamique, Acta Mathematica, 13(1890), 1–270.

V. G. Petrov, J. Kurths, N. V. Georgiev, Reconstructing differential equations from a time series, International Journal of Bifurcation and Chaos, 13(2003), 3307–3323.

N. V. Georgiev, P. N. Gospodinov, V. G. Petrov, Multi-variant time series based reconstruction of dynamical systems, Advanced Modeling and Optimization, 8(2006), 53–64.

V. Ye. Belozyorov, A novel search method of chaotic autonomous quadratic dynamical systems without equilibrium points, Nonlinear. Dynamics, 86(2016), 835–860.

V. Ye. Belozyorov, Reduction method for search of chaotic attractors in generic autonomous quadratic dynamical systems, International Journal of Bifurcation and Chaos, 27(2017), Article ID 1750036, 26 pages.

V. Ye. Belozyorov, On novel conditions of chaotic attractors existence in autonomous polynomial dynamical systems, Nonlinear Dynamics, 91(2018), 2435–2452.

G. Obregon-Pulido, A. Torres-Gonzalez, R. Cardenas-Rodriguez, G. Solis-Perales, Encryption in chaotic systems with sinusoidal excitations, Mathematical Problems in Engineering, 2014(2014), Article ID 782629, 7 pages.

L. Su, C. Li, Local functional coefficient autoregressive model for multistep prediction of chaotic time series, Discrete Dynamics in Nature and Society, 2015(2015), Article ID 329487, 13 pages.

L. Su, C. Li, Local prediction of chaotic time series based on polynomial coefficient autoregressive model, Mathematical Problems in Engineering, 2015(2015), Article ID 901807, 14 pages.

C. Zhang, J. Yue, The chaotic prediction for aero-engine performance parameters based on nonlinear PLS regression, Journal of Applied Mathematics, 2012(2012), Article ID 615618, 14 pages.

R. M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett Publishers, Boston, London, 1995.

H. K. Khalil, Nonlinear systems - 2nd Edition, Prentice hall, Upper Saddle River, New-Jersy 07458, 1996.

V. Sychenko, V. Kuznetsov, Ye. Kosariev, P. Hubskyi, V. Belozyorov,

V. Zaytsev, M. Pulin Development of an approach to ensure stability of the traction direct current system, Eastern Europian Journal of Enterprise Technologies, 95, 5(2) (2018), 47–57.

H. Morais, T. Sousa, A. Perez, H. Johannsson, Z. Vale, Energy optimization for distributed energy resources scheduling with enhancements in voltage stability margin, Mathematical Problems in Engineering, 2016(2016), Article ID 6379253, 20 pages.

V. Ye. Belozyorov, New solution method of linear static output feedback design problem for linear control systems, Linear Algebra and its Applications, 504(2016), 204–227.

F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Publising, Providence, Rhode Island, 2000.

Z. Wei, I. Moroz, J. C. Sprott, A. Akgul, W. Zhang, Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo, Chaos, 27(2017), Article ID 033101, 10 pages.




DOI: http://dx.doi.org/10.15421/141902

Посилання

  • Поки немає зовнішніх посилань.



Індексування журналу

Журнал розміщено у наукометричних базах, репозитаріях та пошукових системах:

  

    

   

    


Адреса редколегії: 49050, Україна, Дніпровський національний університет імені Олеся Гончара, вул. Козакова 18, корп. 14, механіко-математичний факультет, д-р фіз.-мат. наук, проф. Когут П.І. 

email: p.kogut@i.ua

www.kdr.dp.ua

www.dnu.dp.ua


Free counters! 

Лицензия Creative Commons
Це видання має доступ за ліцензією Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.


Open Science in Ukraine - website development