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In this paper we study vector optimization problems in partially ordered Banach
spaces. We suppose that the objective mapping possesses a weakened property
of lower semicontinuity and make no assumptions on the interior of the ordering
cone. We derive sufficient conditions for existence of efficient solutions of the above
problems and discuss the role of topological properties of the objective space.
We discuss the scalarization of vector optimization problems when the objective
functions are vector-valued mappings with a weakened property of lower semicon-
tinuity. We also prove the existence of the so-called generalized efficient solutions
via the scalarization process. All principal notions and assertions are illustrated by

numerous examples.
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1. Introduction

The main goal of this paper is to discuss one class of vector optimization
problems in Banach spaces in the case when the objective vector-valued mapping
possesses a weakened property of lower semicontinuity. The classical setting of
vector optimization problems usually consists in the investigation of “optimal”
elements of a non-empty subset of a partially ordered objective space, where by
“optimal” elements one mainly means the minimal elements or several variants
of this concept, for example, strongly minimal, properly minimal and weakly
minimal elements. Therefore, an important aspect in the vector optimization is
to find conditions which guarantee existence of the so-called efficient solutious,
which are defined as inverse images of the minimal elements of the image set. The
following result is well-known: if the image of admissible solutions in an objective
Banach space is compact then the set of efficient solutions is non-empty. Since the
compactness is a very restrictive assumption, at least in an infinite-dimensional
setting, many authors have tried to weaken it. The typical way to do it is to endow
the objective mapping with some lower semicontinuity properties. In the vector-
valued case there are several possible ways to extend the “scalar” notion of lower
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semicontinuity (see, for example, |3, 4, 5, 7, 8, 13, 16, 20|). We could mention the
lower semicontinuity, quasi lower semicontinuity, and order lower semicontinuity.
However, the above properties for the objective functions may fail at an efficient
solution, even for simple vector optimization problems with non-empty solution
sets. This is an atypical situation for the scalar case

I(z") =inf{I(z) : z€ X}, (1.1)

where each solution x* is always a point of lower semicontinuity of the cost
functional 7 : X — R.

The next problem, which motivated our efforts in this field, concerns the
following observation: if the scalar problem (1.1) has a non-empty set of solutions,
then

inf{I(z) : x€ X} =min{l(z) : z € X} = min|closure{I(z) : z € X}].
However, in the case of vector optimization, the typical situation is:
Min(S) # (0, Min [closure(S)] # 0, and Min(S) N Min [closure(S)] = 0,

where by Min(S) we symbolically denote the family of all minimal elements of a
subset S

Thus our prime interest in this paper is to consider vector optimization prob-
lems in a new setting, which involves topological properties of the objective space,
and discuss the problem of their scalarization. We deal with the case when the
objective mappings take values in a real Banach space Y partially ordered by a
pointed cone A with possibly empty interior. In contrast to the classical setting
of the vector optimization problem

Minimize f(x) with respect to the cone A subject to x € Xy, f: X =Y,
we study the problem in the following formulation:

Realize Inffg’eTXa (x) (1.2)

and associate this problem with the quaternary (Xy, f, A, 7), where the essential
counterpart is the choice of the topology 7 on the objective space Y.

We also extend the concept of lower semicontinuity to vector-valued mappings,
which is compatible with optimization problems in the form (1.2), and discuss
the existence of the so-called (A, 7)-efficient solutions to the problem (1.2). In
particular, we show that the extended concept of lower semicontinuity does not
fail at (A, 7)-efficient solutions, however the topological properties of the spaces
(X,0) and (Y, 7), where this problem is considered, play an essential role. In view
of this, our main intension deals with the scalarization of vector optimization
problems (1.2) with the so-called (A, o x 7)-lower semicontinuous mappings, using
the “simplest” method of the “weighted sum”. We show that in this case one of
the fundamental requirements on the scalarizing vector optimization problems
(according to Sawaragi et al. [18]): solutions to the scalarized optimization problem
must also be minimal solutions to the original vector optimization problem, may
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not hold. Moreover, we show that for (A,o x 7)-lower semicontinuous mappings
f: Xy — Y a situation is possible, when none of the scalar functions, obtained
by “weighted sum”approach, is sequentially lower semicontinuous. For this reason,
we extend the notion of (A,7)-efficient solutions to the so-called generalized
solutions of the vector optimization problem. We study their main properties
and derive sufficient conditions when the generalized solutions can be obtained
via the scalarization process of (1.2).

2. Notation and Preliminaries

Let X and Y be two real Banach spaces. We assume that X is reflexive and
Y is dual to some separable Banach space V (that is Y = V*). We suppose
that these spaces are endowed with some topologies 0 = o(X) and 7 = 7(Y),
respectively. By default o is always associated with the weak topology of X,
whereas 7 is associated with the weak-x topology of Y. For a subset A C Y we
denote by int; A and cl; A its interior and closure with respect to the T-topology,
respectively. We will omit this index if no confusion may occur. Let A be a 7-
closed convex pointed cone in Y. No assumption is imposed on the topological
interior of A. Throughout this paper, we suppose that Y is partially ordered with
the ordering cone A. We denote with <, a partial ordering introduced by the cone
A, that is, for any elements y,z € Y, we will write y <p z whenever z € y + A
and y <p zfory,z €Y, if z—y € A\ {0y }. We say that a sequence {y;}po; CY
is decreasing and we use the notation y; \, whenever, for all k¥ € N, we have
Yk+1 <A Yk. We also say that a sequence {yx}ro; C Y is bounded below if there
exists an element y* € Y such that y* <j yi for all k£ € N.

For the investigation of “optimal” elements of a non-empty subset S of the
partially ordered space Y one is mainly interested in minimal or maximal elements
of S.

Definition 1. (see [11|) An element y* € S C Y is said to be minimal of the set
S, if there is no y € S such that y < y*, y # y*, that is

SNy —A)={y"}

Definition 2. (see [11]) An element y* € S C Y is said to be weakly minimal of
the set S, if
SN (y*—cor(A) =0,

where by cor (A) we denote the algebraic interior of A, that is,

cor(A) :={zZe€V |VzeV thereisan a > 0 with
Z4+aze A foral ael0,al}.

Let Min (S) denote the family of all minimal elements of S. We say that an
element y* is the ideal minimal point (or a strongly minimal element) of the set
S,if y* € S and y* <p y for every y € 5.

Let us introduce two singular elements —oop and +o0op in Y. We assume that
these elements satisfy the following conditions:

1) —oop 2y =X +oop, Vy€Y; 2)+o00p + (—oop) = Oy.
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Let Y* denote a semi-extended Banach space: Y* =Y U {+o00,} assuming that
|| +ooally =400 and y+ A(+oop) =+ccVyeY and VA > 0.
The following concept is a crucial point in this paper.

Definition 3. We say that a set F is the efficient infimum of a set S C Y with
respect to the 7 topology of Y (or shortly (A, 7)-infimum) if E is the collection
of all minimal elements of cl; S in the case when this set is non-empty, and E is
equal to {—oop} otherwise.

Hereinafter we denote the (A,7)-infimum for S by Inf*" S, Thus, in view of
the definition given above, we have

AT S Miny (cl- S), Minp(cl, S) # 0
| —oon, Miny (cl; S) = 0.

The following example shows the significance of this definition and compares

it with the notion of minimal elements.
Ezample 1. Let Y = R? and let A = Ri be the natural ordering cone of positive
elements in R2. Suppose that the set S C Y is given as S = U3_, X;, where

Xi={2€R?® : 21>1, 20>3, 21 + 22 <5},

Xo={2€R?® : 21>2, 20>2, z1 +2 <5},

Xs={2€R? : 21 >3, 20>4, 21 +2 <5},

Xy ={(2:3),(32)}

(see Fig. 1). It is essential that the set S is not closed. Then the set Mina (S) of

Fig. 1. The set S in Example 1
all minimal elements of S is given as

Miny () = {(2;3), (3;2)},
whereas the (A, 7)-infimum of the S reads as

InfA7(8) = {(1;3),(2:2), (3; 1)},
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where 7 is the strong topology of R?. Consequently, in contrast to the scalar case
where the inclusion Miny (S) C InfA7 S is always true, we have:

Inf7(S) # 0, Mina(S) # 0, and Inf*7(S) N Miny(S) = 0.

Let Xp be a non-empty subset of the Banach space X, and f : Xy — Y be
some mapping. Note that the mapping f : Xy — Y can be associated with its
natural extension f : X — Y® to the whole space X, where

iy _ f(x)v WS X87
)= { +oop, T ¢ Xp.

Following [1] a mapping f : Xy — Y* is said to be bounded below if there
exists an element z € Y such that z <, f(z) for all z € Xj.

Definition 4. A subset A of Y is said to be the efficient infimum of a mapping
f: Xog—Y

with respect to the 7-topology of Y and is denoted by Infi\gxa (x), if A is the
(A, 7)-infimum of the image f(Xy) of Xp in Y, that is,

Inf)"y f(x) =Inf™" {f(z) : Vo € Xp}.

Remark 1. It is clear now that if a € Inff;’eTXa f(x) then
cl: {f(z) : Ve e Xg}N(a—A) ={a}

provided Miny [cl; {f(z) : Vz € Xp}] # 0.

Let {yi}rey be a sequence in Y. Let L{y,} denote the set of all its cluster
points with respect to the 7-topology of Y, that is, y € L7{yg} if there is a
subsequence {yx, }5°, C {yr}re, such that yx, — yin Y asi — oo. If this set is
lower unbounded, i.e., InfA" L7{y;,} = —ocoy, we assume that {—oopr} € L7{y;}.
If Sup™™ L7{yx} = +oon, we assume that {+oor} € L7{ys}. Let 29 € Xp be a
fixed element. In what follows for an arbitrary mapping f : Xy — Y we make
use of the following sets:

L7 (fwo) = U L@}, 2.1)
{z1} 21 €5 (20)
LXT(f,20) = L7 (f,20) N Infh f(2), (2.2)

where M, (z) is the set of all sequences {zy}—; C X such that z — o with
respect to the o-topology of X. To illustrate the characteristic features of the set
LZ5T(f, x0), we give the following example.

Ezample 2. Let Xy = [1;3], Y = R?, and let A = R% be the ordering cone of
positive elements. We define a vector-valued mapping f : Xy — Y as follows:

f<x>={ E

2.3
2, -t 2
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Fig. 2. lllustration of the set LI X7 (f, zo)

min

(see Fig. 2). Then
L7 (f,x0) = {f(w0)} Vo € (1;3],

Lo (f1) = {[;] ;[f}}, and InfggXaf<x>=:{[;] ;[f}}

Therefore, L7 7(f, z9) = 0 in the case when x¢ € (1;3], and

e ={ 5]+ 2]}

Remark 2. It is easy to see that the set L7X7(f, z9) can be alternatively defined

as "
Lo (fow0) = {y" € L7 (fao) i f(mx) & v,
flxp) <ay* VEEN, Vo, > xo}. (2.4)
Now we are able to introduce the notion of the lower limit for the vector-valued

mappings.

Definition 5. We say that a subset A C Y U {+oo,} is the A-lower sequential

limit of the mapping f : Xs — Y at the point xg € Xy with respect to the

product topology o x 7 of X x Y, and we use the notation A = lim ian’Z f(x),
T — T0

it

LU>-<T ,.'1: bl LJ>'<T 7$ ?
liminf?  fla):={ ™ (. 20) min (/:70) # (2.5)
— WfA Lo (f ), L3 (f0) = 0

Remark 3. Note that in the scalar case (f : Xy — R) the sets
Infé\gXa f(z) and  InfMLOXT(f, 20)

are singletons. Therefore, if L7 (f,zo) # 0 then we have

Lo (f0) = LT (f a0) NInfp ) f(x)
= InfN" LOXT(f, 20) N Infg’gx6 f(x)
= InfM LI (f, 2).

Hence the choice rules in (2.5) coincide and we come to the classical definition of
the lower limit.
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To illustrate the crucial role of the conditions

Lo (fizo) #0 and LT (f,20) =0

min min
in Definition (5), we give the following example.

Example 3. Under assumptions of Example 2 we consider the mapping f : Xy —
Y defined as follows (see Fig. 3):

Fig. 3. Illustration of Definition 5 in Example 3

HEEES!

A =1, =0

Let us define the A-lower sequential limit of f: Xy — Y at two points: firstly at
xo = 1, and after at xg # 1. Then direct calculations show that

it {[J v~ )

LO¥T(f,20) = {["””10}} Vo € (1;3].

Hence, since
LT (f,20) := Inf>" f(z) "L (f,20) =0 for every zg € (1;3],

min zeXy

it follows that

liminfﬁimo f(z) = Inf7 { [3310} } = { [3310] } :

At the same time, in the case when zg = 1, we have

LI (f,1) := Infi\gxa F(x)NLOXT(£,1) = { E] } :

As a result, we conclude:

liminf7  f(z) = L5 (f,1) = {m }
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3. The setting of vector optimization problems

Let Xy be a non-empty o-closed subset of the reflexive Banach space X.
Let Y be a partially ordered Banach space with a 7-closed pointed ordering cone
A CY.Let f: Xy — Y bea given mapping. Then the typical vector optimization
problem can be stated in general manner as follows:

Minimize f(x) with respect to the cone A } (3.1)

subject to = € Xjy.

Usually this problem is associated with the triplet (Xp, f, A), where the set Xy is
called the set of admissible solutions to the problem (3.1). The problem consists in
determining minimal (or weakly minimal) solutions ™" € X, which are defined
as the inverse image of the minimal (or weakly minimal) elements of the image set
f(Xp) in the sense of Definition 1 (or Definition 2, respectively). Let Min(Xp, f, A)
and WMin(Xp, f, A) denote the sets of minimal and weakly minimal solutions to
the problem (3.1), respectively. It is clear that the notions “minimal”and “weakly
minimal”are closely related, moreover, the following inclusion is obvious

Min(Xp, f,A) € WMin(Xy, f,A).

However, the concept of weak minimality is rather of theoretical interest, and it
is not an appropriate notion for applied problems.
In contrast to (3.1) we will consider the vector optimization problems in the
following form:
. A,
Realize Inf, [y f(z), (3.2)

where the operator Infﬁgxa is defined in Definition 4. Note that in this case the

optimization problem (3.2) can be associated with the quaternary
(Xo, [ A7), (3.3)
which indicates that the essential component of this setting is the choice of the

T-topology on the objective space Y.

Remark 4. It is clear that vector optimizations problems (3.1) and (3.2) are
identical in the case when ¥ = R and A = R4, and they lead to the classical
setting of a scalar constrained minimization problem. However, in general, there
is a principal difference between the mentioned setting of vector optimizations
problems. First, as follows from (3.2), it is natural to say that an element z* € Xy
is a solution to the problem (3.2) if

f(z") e Infi\gXa (x). (3.4)
Hence, f(z*) € Miny (cl; f(Xp)). Since f(x*) € f(Xp) it follows that
f(a:*) € Miny f(Xa)

Therefore, * is a minimal solution to the problem (3.1), i.e. z* € Min(Xy, f, A).
However, as follows from Example 4 given below, the converse statement is not
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true in general. Note that this situation is atypical for the scalar case when we
always have the implication

it f(z*) = ;161}?8 f(z), then z* € Xy and f(z¥) = gcien)g(9 f(x).

On the other hand, as follows from Definition 4, the problem (3.2), and hence the
set of its solutions, essentially depend on the properties of the 7-topology of the
objective space Y. Thereby, the problems (3.1) and (3.2) are essentially different.
We introduce now the following concept.
Definition 6. An element 2°// € Xj is said to be a (A, 7)-efficient solution to
the problem (3.2) if 2¢// realizes the (A, 7)-infimum of the mapping f: Xy — Y,
that is,
eff AT — Infd T .
f@) eInf, 2 flz) =Inf>" {f(z) : Vo € Xp}.

We denote by Eff;(Xg; f; A) the set of all (A, 7)-efficient solutions to the
vectorial problem (3.2), i.e.

Eff,(Xp; f3 A) = {xeff € Xy ¢ f(a) e mfh, (x)}. (3.5)

Taking into account the motivation of Remark 4, we come to the following obvious
result:

Proposition 1. Let X and Y be two Banach spaces, let Xy be a non-empty
subset of X, and let f : Xy — Y be an objective mapping. Assume that the space
Y is partially ordered by a 7-closed pointed cone A C Y. Then the solution sets
to the problems (3.1) and (3.2) satisfy the relation

EHT(X67 VE A) C MIH(Xg,f, A)

The sets Eff;(Xg; f; A) and Min(Xp, f,A) do not coincide in general. To
illustrate this fact, we give the following example.

Ezample 4. ( see [12]) Let X =Y = R? and let A = R? be the ordering cone of
positive elements. We suppose that a vector-valued mapping f : X — Y and a
set of admissible solutions Xy are such that f(z) =z and Xp = U_, X;, where
Xi={z€R®: 21>1, 29>3, 21 +2 <5},
Xo={2€R? : 21>2, 20>2, 21 +2 <5},
ng{z€R2 2 >3, 29 >4, z1+zQ§5},
Xy ={(2:3),(3;:2),(3: 1)}

(see Fig. 4). Then straightforward calculations show that

o ={[3. [} s ={3. ]

Hence
e 0= ([} s 2.7}
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Fig. 4. The image of the set X5 in Example 4

The aim of this section is to obtain an existence theorem of the (A, 7)-efficient
solutions for a vector optimization problem (3.2), that is, to find sufficient condi-

tions which guarantee the relation Eff,;(Xg; f; A) # (0. Let f: X — Y* denote
the natural extension of f: Xy — Y to the whole X. We begin with the following
concept of lower semicontinuity for vector-valued mappings.

Definition 7. We say that a mapping f : Xy — Y is (A, o x 7)-lower semiconti-
nuous ((A, o x 7)-Isc) at the point zy € Xy if

flzo) € liminf™7  fla).

X — 0
A mapping fis (A,o x 7)-lsc if f is (A,o X 7)-lsc at each point of Xj.
The main motivation to introduce this concept is the following observation.

Proposition 2. Let X be a Banach space, and let Y be a partially ordered
Banach space with an ordering 7-closed pointed cone A. Moreover, let Xg be a
non-empty subset of X and let f : Xy — Y be a given mapping. If 20 € X is
any (A, 7)-efficient solution to the problem (3.2), then the mapping f: Xy — Y
is (A, o x 7)-1sc at this point for any Hausdorff topology o on X.

Proof. Let 2° € Eff .(Xp; f; A). Then f(z%) € Infﬁgxa f(x). On the other hand
f(2°) € LEZT (£,2°)

for any Hausdorff topology o on X. Hence
(@) e LTXT(f, 20).

As a result, by Definition 5, we have

F(2°) € liminf7 o f@).

r—T

This concludes the proof. O
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Before proceeding further, we note that the concept of (A, o x7)-lower semicon-
tinuity for the vector-valued mappings, given above, is more general than well
known extensions of the “scalar” notion of lower semicontinuity to the vector-
valued case (see, for example, [3, 4, 5, 7, 8, 13, 16]). We recall now a few main
definitions of lower semicontinuity of vector-valued mappings with respect to the
product topology ¢ x 7 on X x Y, introduced in [7, 8, 10, 19].

Definition 8. (see [8]) A mapping f : X — Y* is said to be sequentially lower
semicontinuous (s-lsc) at 2° € X, if for any y € Y satisfying y <x f(z") and for
any sequence {zy }re; of X o-convergent to z°, there exists a sequence {yx}re; C
Y 7-converging to y in Y and satistying condition yi < f(zx), for any k € N.

Definition 9. (see [7]) A mapping f : X — Y* is said to be quasi lower
semicontinuous (g-lsc) at 20 € X, if for each b € Y such that b #5 f(2°), there
exists a neighborhood O of 2% in the o-topology of X such that b %5 f(z) for
each z in O.

A mapping f is s-Isc (resp., ¢-Isc) if f is s-Isc (resp., g-lsc) at each point of
X. It is clear that the s-lsc-property of f at z implies its ¢-lsc at this point. To
characterize the properties of (A, X 7)-lower semicontinuity more precisely, we
give the following result.

Proposition 3. (see [12]) If a mapping f : Xy — Y is ¢g-lower semicontinuous at
2% € Xp with respect to the o x 7-topology on X x Y, then f is (A, o x 7)-lower
semicontinuous at this point.

As a consequence of this result and the properties of quasi-lower semicontinuity,
we have: if f is s-lsc then f is (A, x 7)-Isc. However, in general, (A,o X 7)-Is
continuity of the vector-valued mappings does not imply their ¢-Isc property.
Indeed, let us consider the following example.

Ezample 5. Let X,q = [-3,—1], Y = R? and let A = Ri be the ordering cone
of positive elements. We define a vector-valued mapping f : X,q — Y as follows

(see Fig. 5):
{ 5] e £

flx) =
2, e=-1

(3.6)

Let xg = —1. Then

o) = m liminy  fla) = {m B]} (3.7)

(see Fig. 5). Let us take b = [1é5]. Obviously b #a f(zo) and there is no
neighborhood of the point x¢ such that b #a f(z) for all z from this neighborhood.
Hence, this mapping is neither g-Isc nor Isc mapping at the point xy. However,
by (3.7), we have the inclusion

f(zo) € liminfigx Fl2).

Hence, f is the (A, o0 x 7)-lower semicontinuous mapping at zo = —1.
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Yy F(X,)
F N\ P60
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X, '
< - ¥ } s
-3 -1 x 1 Y

Fig. 5. The example of (A, o X 7)-lsc mapping which is neither s-Isc nor g-lsc mapping

Before going on further, we prescribe some additional properties to the ordering
cone A.

Definition 10. Let (Y, 7) be a real topological linear space with an ordering cone
A. The convex cone A is called Daniell, if for every decreasing net (i.e. ¢ < j =
yj <A ¥i), which is lower bounded, 7-converges to its (A, 7)-infimum.

Condition ensuring the Daniall property are given by the next lemma.

Lemma 1. Let (Y, 7) be a real topological linear space with an ordering cone A. If
Y has compact intervals [—z, z] and A is T-closed and pointed, then A is Daniell.

For this result see Borwein [6]. A typical example of Daniell cone with respect
to the weak topology of LP(Q2) (1 < p < +00) is the so-called natural ordering
cone in LP(§) which is defined as

App) ={f € LP(Q) : f(x) > 0 almost everywhere on Q}.

Definition 11. We say that a non-empty subset Yy of a real topological space
(Y, 7) with an ordering cone A is lower semibounded if every decreasing net {y;} C
Yy is bounded from below.

As a direct consequence of Definition 11, we have the following observation.

Remark 5. Let Yy be a lower semibounded subset of a partially ordered linear
topological space Y with a 7-closed ordering cone A. Then, for any z € Yj
the section Yy = ({z} —A) NYp of ¥y is bounded from below, that is, there
exists an element z* € Y such that z* <, y for all y € Y7. Hence, the lower

semiboundedness of a subset Y} implies the lower semiboundedness of its 7-closure
ClT Y().

Now we are ready to formulate the main result of this section.

Theorem 1. Let (X,0) and (Y, T) be two real topological linear spaces, and let' Y
be partially ordered with the T-closed pointed Daniell cone A. Moreover, let Xg be
a non-empty sequentially o-compact subset of X and let f: Xg — Y be a given
(A, 0 x T)-lower semicontinuous mapping. Then the vector optimization problem
(3.2) has a non-empty set of (A, 7)-efficient solutions.
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Remark 6. Before the proof, we note that in contrast to the scalar case for vector
optimization problem (3.2) with a sequentially o-compact subset of Xy and (A, o x
7)-lower semicontinuous objective mapping f : Xy — Y, the image set f(Xp) can
be unbounded from below. It means that, in general, there does not exist an
element y* € Y such that f(X5) C {y*} + A. Indeed, let us consider the following
example: let X = R, Xp = [0;1], Y = R?, and let A = R% be the ordering cone
of positive elements. We suppose that a vector-valued mapping f : X — Y is
defined as follows:

fz) = {_11/5“’] it 2 [0:1), and f(1) = [_02

S (v | e ()

it follows that
s s eAT _ -2
hmlnfxilf(x) = {[ 0 ]}

Hence this mapping is (A, o x 7)-lower semicontinuous on Xy. However the image
set f(Xp) is unbounded from below (see Fig. 6).

Since

Le

Fig. 6. The example of (A, o X 7)-lsc mapping with lower unbounded image

Proof. Since the proof of this theorem is rather technical, we divide it into several
steps.

Step 1. First we show that the image set f(Xp) is lower semibounded in the
sense of Definition 11. Indeed, let us assume the converse. Then, there exists a
sequence {xy},—; C Xp such that the corresponding image sequence

{yr = fzr) 12y C F(Xo)

is decreasing (i.e., yr+1 <A yx Vk € N) and unbounded from below in Y. Hence
—oop € L™ {yg}, where L™ {y; } denotes the set of all its cluster points with respect
to the 7-topology of Y. By the initial assumptions, the family {x;};2, C Xp is
sequentially o-compact, so we may suppose that z, — z* in X, where z* is some
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element of Xp. Since the sequence { f(zx)}r—; is unbounded from below, we have
{—oop} € LZ7(f,2*). Hence, by Definition 5,

liminfiim* f(z) ={—oop}.

On the other hand, taking into account the (A, o x7)-lower semicontinuity property
of f, we obtain
f(z*) € iminf™] _ f(x)
r— X

which contradicts the previous conclusion. This proves Step 1.
Step 2. Let us prove that the set Inf;\gixa f(z) is non-empty. We show that
there exists at least one decreasing sequence {yx}re; C f(Xp) such that

Y — Y€ Infﬁ&a f(z) =InfM {f(z) : Vo € Xy}.

Let y be an arbitrary element of cl; f(Xy). To begin with, we show that for any
neighbourhood of zero V; in (Y, 7) there exists an element y" € cl, f(Xp) such
that

y¥ <ay and ({g”} = A\{0y}) N (el f(Xo)\ (V- + {9¥}) = 0. (38)

Having assumed the converse, we suppose the existence of a sequence

{yetiz, Cclr f(Xo)

such that

v1 € f(Xa), k1 € (ur} — AN{Oy}) N (el f(Xo) \ (Vr +{yx})) Yk N

Since yr+1 € {yr} — A\ {0y}, this sequence is decreasing. Taking into account
Remark 5, the set cl; f(Xpy) is lower semibounded. Therefore, there exists an
element y* € Y such that y* <j yi for all k£ € N. Hence, by Daniell property, this
sequence T-converges to its (A, 7)-infimum: yy, 5 ¥ € Y. However this contradicts
the condition

Yre+1 € clr f(Xo) \ Vr +{yk}) VEkeEN

Thus the choice by the rule (3.8) is possible for any neighbourhood V.

Let {Vi};2, be a neighbourhood system of zero in (Y, 7) such that V41 C Vg
for every k € N, and for any neighbourhood V(0y) in (Y, 7) there is an integer
k* € N such that Vg C V(0y ). Then, using the choice rule (3.8), we can construct
a sequence {uy}re; C clr f(Xp), where u;y is an arbitrary element of f(Xp), as
follows

upr1 <a up and ({ur} — A\ {0y })N
Nl f(Xo)\ Ve +{ur})) =0 Vk>1. (3.9)

Since ug41 € {ur} — A it follows that

ups1 € cly f(Xp) and ugyq € clr f(Xo) \ (Vi + {ur}).
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Hence, in view of Daniell property, {uy } 7, is the 7-converging decreasing sequen-
ce. As a result, there is an element

u* € InfM7 {uy, € cl, f(Xp) : Yk € N}

such that up — w*. It is clear that u* € cl, f(Xy). Our aim is to prove that
u* € InfA {f(x) : YV € Xp}. To do this, we assume that there exists an element

geInf> {f(z) : Vo e Xy}

such that ¢ <j u*. Since u* < wuy for all £ € N, it follows that ¢ < wuy for all
k € N. Then (3.9) ensures that

({g} = ANA{Oy }) N (clr f(Xa) \ Vi +{ur})) =0 VEkeN. (3.10)

Hence (3.10) and the fact that ¢ € cl; f(Xp) imply g € Vi + {uy} for every k € N,
that is, up — ¢ in Y. Thus u* = ¢ and this concludes the Step 2.

Step 3: We show that the set Eff - (Xg; f; A) is non-empty. Let £ be any element
of Infi\gxa f(x). Then, by Definition 4, there exists a sequence {y;}ro; C Y such

that yr, — ¢ in Y. We define a sequence {zy}7e, C Xp as follows x = £~ (yx)
for all £ € N. Since the set Xy is sequentially o-compact, we may suppose that
there exists 29 € Xp such that z;, — =z in X. Hence & € Lo*7(f,z0), and we
get

L7 (f,20) NInfy f(x) # 0.

Then, due to the (A,o x 7)-lower semicontinuity of the mapping f on Xy and
Definition 5, we obtain

f(zp) € lim infM7 f(x)=L7"(f,z0) N Infi\gxa ().

T — T

Thus, on the one hand,
f($0) S LUXT(fa $0)7

which implies the equality
flwo) = &= 7= lim yj.

On the other hand, ¢ € Infé\gXa (x). Hence, zop € Eff.(Xp; f; A) and this

concludes the proof. O

4. Vector optimization problems for (A, o x 7)-lower
semicontinuous objective mappings and their scalarization

Typically, scalarization means the replacement of a vector optimization prob-
lem by a suitable scalar optimization problem that is an optimization problem
with a real-valued objective functional. It is a fundamental principle in vector
optimization that optimal (minimal) elements of a subset of a partially ordered
linear space can be characterized as optimal solutions of certain scalar optimization
problems. For the problem (3.1), a wide family of scalar problems is known,
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which fully describe the set of all minimal elements Min(Xy, f, A) under suitable
assumptions (see, for instance, [9, 11, 14, 15] and the references therein). However,
our prime interest is to describe the set Eff . (Xp; f; A) of (A, 7)-efficient solutions
to the vector problem (3.2) (see (3.5)), which involves some topological properties
of the objective mapping f and the space Y. In order to do it, we will consider
the problem of scalar representation of vector optimization problem (3.2) with
a (A,o x 7)-lower semicontinuous mapping f : Xy — Y, using the “simplest”
method of the “weighted sum”.

To begin with, we introduce some additional suppositions. As was mentioned
above, the objective space Y is dual to some separable Banach space V' (that is
Y = V*). Suppose that the space V is partially ordered with a nontrivial pointed
ordering cone K C V for which A is the dual cone, that is,

A=K":= {yGY t (Y, Ay, = 0 for all )\GK}. (4.1)

Definition 12. We say that A € V is a quasi-interior point of the cone K if
A € K and (b, )\>Y;V >0 for all b€ A\ {0}.

We denote by K* the set of all quasi-interior points of K. Note that, in general,
we have the inclusion cor (K) C K*, where cor K is an algebraical interior of the
cone K (for more details we refer to [11]).

In what follows, we associate with the vector optimization problem (3.2) the
following scalar minimization problem

(@) = (f(2), A)y.,, — inf subject to z € Xg C X (4.2)

where A is an element of the cone K.
The main property of this problem can be characterized as follows.

Theorem 2. Let X and Y = V* be two real Banach spaces, let Y be endowed
with the weak-x topology T, and let Y be partially ordered with the cone A = K*,
where K is an ordering cone in V with a non-empty quasi-interior K*. Let also
Xo be a non-empty subset of X, and let f : Xg — Y be a given mapping. Assume

that there are elements 2° € Xy and A\ € K* such that 2° € Argmin (f(x), \)y.i-
zeXp ’

Then z° is a (A, 7)-efficient solution to the problem (3.2).

Proof. By the initial assumptions, we have
f)\(ajo) - f)\($) = <f($0) - f(ﬂf), A>Y;V < 07 Vr e Xa' (43)

Let z be any element of the image set cl; f(Xps). Then there exists a sequence
{zk )72, C Xp such that f(z) = zin Y as k — co. Hence, in view of (4.3), we
get

(f@®) = f@r): Ay, <0, VEEN (4.4)

Passing to the limit in (4.4) as kK — 0o, we obtain

(f(2°) — 2, My €0, Vzecd; f(Xp). (4.5)
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Let us assume that x° ¢ Eff (Xps; f; A). Then there exists an element h €
cl,; f(Xy) such that h <5 f(z°). So, f(2°) —h € A\ {0y }. Hence, by Definition 12,

(f(@®) = hA)y >0,

and we come to a contradiction with (4.5). So, #° € Eff,(Xp; f; A) and this
concludes the proof. O

As an evident consequence of this result, we have the following conclusion.

Corollary 1. Under suppositions of Theorem 2, we have

U Argmin (f(x), A}y, C Bff-(Xo; f; A). (4.6)
e Kt zeXy

Remark 7. Note that Theorem 2 generally fails when A € K \ K*. Indeed, let
V =Y =R% Xy = [1,2], and let A = R% be the ordering cone of positive
elements (then K = A). We define the objective mapping f : Xy — Y as follows:

f@ =]

1
} if xe€(1,2], and f(x)= [2] at the point x =1
(see Fig. 7). Straightforward calculations show that

Z,

Fig. 7. The example of the problem for which Eff;(Xp; f; A) =0

liminfﬁilf(x) = E] ,

and hence Eff;(Xpy; f; A) = 0. However, if we take A\ = [(1)] € K\ K¥ then

(f(@), A>v*;v =z

and hence
Argmin (f(z), Ay« = {1} € Eff-(Xo; f; A).
z€(1,2]

Before proceeding further, we note that the objective mapping in Theorem 2
does not possess the (A, o x 7)-lower semicontinuity property, in general. So the
question is about the solvability of the associated scalar minimization problems
(4.2) with A\ € K*. Following the direct method in the Calculus of Variations, the
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constrained minimization problem (4.2) has a non-empty set of solutions, provided
Xp is a o-compact subset and

O = O Ny Xp — R

is a proper lower o-semicontinuous function. However, the characteristic feature
of vector optimization problems (3.2) is the fact that with any (A,o x 7)-lower
semicontinuous mapping f : Xy — Y, which is neither lower semicontinuous
nor quasi-lower semicontinuous on Xy, there can be always associated a scalar
minimization problem (4.2) for which the corresponding cost functional fy : Xy —
R is not lower o-semicontinuous on Xy. Indeed, let 7 be the weak-* topology on
Y, and let 2° be a point of X where the quasi-lower semicontinuity of f is failed.
Then there exists at least one element a* € cl. (f(Xg)) such that

a* € liminf;\gxo fx), f(z%) € liminfigxo f(z), and a* # f(z°).  (4.7)

Let {z1}7>, C X be a sequence such that zy = 2°in X and f(z;) = a* inY,
Since a* %4 f(20), it follows that a* — f(2°) & A and hence there exists a vector
A" € K such that

(a* - f(xo),)\*>y;v < 0.

As a result, we have

liﬂgf P (zg) = klln;o (f(@E), Ny

= (@ Ny < (f@°) Ny = fae(@?).

Thus, the lower o-semicontinuity property for fy- fails at 2. Moreover, as the
following example shows, for (A, o x 7)-lower semicontinuous mappings f : Xy —
Y a situation is possible when none of the scalar functions fy(z) = (f(2), A)y./

is lower o-semicontinuous for any A € K*,

Ezample 6. Let Xy = [1,2] C R, and let A = R?% be the ordering cone of positive
elements in Y = RZ2. It is clear that in this case V = Y and K = A. Let us
consider the mapping f : Xy — R? defined by (see Fig. 8)

(7], ifze[L,2]\{l+1/k, keN},

f@) = Hk}’ ifz=1+1/k, keN.

2

[1]

Fig. 8. The vector-valued mapping in Example 6
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Straightforward calculations show that

liminfﬁél f(z) = { E] } )

s B 0 1+1/k
hmlnfxi)(lﬂ/k) f(z) = {[1 +k‘] , [ L .

.. eAT .. eAT
f(1) e hmlnfxi)lf(:n) and f(1+1/k) € hmmfxi)(lﬂ/k) f(z),

Since

it means that the mapping f : Xy — R? is (A, 0 x 7)-lower semicontinuous at
these points and in fact on the whole domain Xy. Let A = Rﬂ be any vector

with non-negative components, i.e. A € K. Then the scalar function fy, associated
with the vector-valued mapping f by the scheme of the “weighted sum”, can be
represented in the form

- Mz + Ao, if £ 1+ 1/k,

By = @y ={ 8T HETI TN vkeN vacx,

(4.8)

To be sure that the lower g-semicontinuity property for this function at the points

xr = 1+ 1/k is valid, we have to choose the parameters A; and A2 so that the
inequality

Ao(14+k) <M1+ 1/k)+ Ao (4.9)

holds true for every k € N.
However, taking into account the non-negativeness of \; and passing in (4.9)
to the limit as k& — oo, we obtain Ay = 0. As a result, we have

ez, if x#£1+1/E,
f)\(aj)—{ 0, if z=1+1/k, VkeN, Va e Xp,. (4.10)

Nevertheless, as follows from (4.10), the inequality

() < 1igg.}f In(zr)

does not hold for any A\; > 0 with the exception of Ay = 0. Thus, there is a unique
scalar function in the collection (4.8) satisfying the lower semicontinuity property
in the domain Xy = [1,2]. This function is fy(z) = 0.

This example motivates the introduction of the following notion.
Definition 13. Let f: Xy — Y be a given mapping. The cone
K7 :={\€ K : fy islower o-semicontinuous on Xp} (4.11)
is called the cone of g-semicontinuity for the mapping f.

As a result, Theorem 2 can be sharped as follows.
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Theorem 3. Let X be a reflexive Banach space, let V' be a separable Banach space,
and let Y = V* be endowed with the weak-x topology T and partially ordered with a
pointed Daniell cone A = K*, where K is a weakly closed ordering cone in V. Let
also Xy be a non-empty bounded weakly closed subset of X, and let f: Xy — Y
be a (A, 0 X T)-lower semicontinuous mapping, where o is the weak topology of X.
Assume that K¢\ Oy # 0. Then

Argmin (f(z),\)y NEff-(Xo; f; A) #0 VA€ K7\ Oy. (4.12)
zeXy

Proof. As follows from Theorem 1, under the above assumptions, we have
Eff- (Xo; f3 A) # 0.

Let A be any element of K7 \ Oy. Then, by the direct method in the Calculus of
Variations, we obtain

Argmin <f(£1)), )‘>Y;V ?é 0.
zeXy

If \ € K* then relation (4.12) is obvious by Theorem 2. So, we suppose that
A€ KT\ (Kﬁ UOy). Assume that

Argl{lin (f(2), Ny, € Bff-(Xo; f; A).

Then, there exists an element z* € Xy such that

z* € Argmin (f(x), A\)y.y, (4.13)
zeXy
2" ¢ Bff, (Xp; f3 A). (4.14)

Hence, by (4.14), there exists an element
y* € Miny (cl; f(Xg)) C cl f(Xp) such that y* <p f(z¥).
However, in view of (4.13) and (4.1), this leads us to the equality
fal@®) = <f(x*)7)‘>y;v = <y*7)\>y;v- (4.15)
Let {x}r-, be a sequence in Xp such that
flzp) = y* as k — oo. (4.16)

Since the set Xy is sequentially weakly compact, we may suppose that there exists
rg € Xp such that 2, 7> x¢ in X. On the other hand, y* € Miny (cl, f(X5)).
Hence, y* € Inf;\’gxa (z) by Definition 6. As a result, we have xg € Eff - (Xg; f; A).
Taking into account the lower o-semicontinuity of the functional fy : Xo — R,

we get

o by (4.16)
<f(1’0)7)‘>y;v§11g£f<f(xk)a)‘>y;v . W™ Ny -

Then, combining this with (4.15), we obtain

(f(20), Ay < (f(@™): Nyv s
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zo € Argmin (f(x), A)y.y -
zeXp
Thus, we have shown that there exists at least one element xy € Xy which is a

joint point of the sets Argmin (f(z), A)y.,, and Eff;(Xps; f; A), respectively. This
zeXy ’
completes the proof. O

As an evident consequence of this theorem, we have the following conclusion:

Corollary 2. Assume that in addition to the conditions of Theorem 8 there exists
an element A € K]C[ \ Oy such that the infimum in the scalar problem

Minimize fx(x) = (f(x),\)y subject to x € Xy (4.17)
is attained at a unique point ©* € Xy. Then x* € Eff -(Xo; f; A).

Note that, we do not give the conditions which would guarantee the fulfilment
of the relation KJ‘Z \ Oy # (). However, as a hypothesis, we can make the following
conjecture:

If the image set f(Xy) is bounded in (Y,|| - ||) and K has a non-empty quasi-
interior (Kji # 0), then under conditions of Theorem 3, the cone K}’ contains at
least one nontrivial element.

To motivate this hypothesis, we note that if a uniformly bounded mapping f :
Xy — Y is quasi-lower semicontinuous on Xy then f is lower semicontinuous (see
[2]). In this case the functions fy(z) = (f(z), A}y, are lower o-semicontinuous
on Xy for every A € K. Hence K? \ Oy # 0. Let 2° be a point of Xy where
the quasi-lower semicontinuity of f fails. Then there exists at least one element
a* € cl; (f(Xy)) with properties (4.7). Let A* be an element of K such that

(F@), Ny < (@ Xy Va e nminfig o f(@). (4.18)
The existence of A* immediately follows from the fact that

f(z%) #a a* forall o* € liminf;\gxo f(x).

Let {zx};-,; C Xp be a sequence such that xy, Z 2% in X. Since each of elements
a* belongs to the set

o(fa = ) L)

{zr}i, €Mo (0)
o~ [ee]
of T-cluster points of the sequences { f (:Ek)}k R it follows from (4.18) that

<f(x0), )\*>Y.V < liminf (f(zy), )\*>Y;V.

) k—oo

Thus, the function fy« is sequentially lower o-semicontinuous at the point .
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5. The ill-posed vector optimization problems and their
generalized solutions

Let A be an arbitrary element of the cone K. Denote by

Sol(Xg; fx) := Argmin fy(z)
xe€Xp

the solution set to the scalar problem (4.17). We recall that the problem (4.17)
is said to be well-posed in the generalized sense when every minimizing sequence
{zK}rey C Xp (i.e. such that fi(zg) — infzex, fa(z)) has a subsequence o-
converging to some element of Sol(Xp; fi). We recall also a generalization of
the above mentioned notion. The problem (4.17) is said to be well-set when
every minimizing sequence contained in Xy \ Sol(Xy; f)) has a o-cluster point
in Sol(Xy; fr). However, as follows from the arguments of this section (see also
Example 7 given below), the problem (4.17) can be neither well-posed nor well-
set, in general. The main reason is the (A, o x 7)-lower semicontinuity property of
the objective mapping f which is the weakened property of lower semicontinuity
for vector-valued mappings in Banach spaces.

Ezample 7. Let Xy = {x € X : ||z| <1} be a unit closed ball in a reflexive
Banach space X. Let Y = R? be the objective space partially ordered with the
cone A = Ri of positive elements in R%. We suppose that X and Y are endowed
with the strong topologies ¢ and 7, respectively. Let the objective mapping f :
Xoa — R? be defined as

2 — |l

f(a;) = |:1+ H$H:| ifx e Xad\{OXUS},

o= [3] wee s on = 1],

where S = {z € X : ||z|| = 1} is the unit sphere in X. Since

M (el (X)) = Mina (7060 = { [ 1]},

1
liminfiiox f(z) = {E] },

and hence f is (A, o x 7)-lower semicontinuous on Xy. Then, by Theorem 1, the
corresponding vector optimization problem (Xy, f, A, 7) is solvable and, moreover,
2¢7f = 0y is its unique (A, 7)-efficient solution.

Let us consider the following scalar problem

it follows that

Minimize fy(z) = (f(x), \)gz subject to z € Xp, (5.1)
associated with the vector problem (Xy, f, A, 7), where

2= |l=fl, if |lz[| <1 and z # Ox,

=[] h@=G@ae=t 2 itses,
1, if x=0x
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Through direct verification we can show that Sol(Xps; fn) = {Ox}. However,
this scalar problem is neither well-posed nor well-set with respect to the strong
topology of X, because all minimizing sequences for (5.1) containing in Xy \
Sol(Xy; fx) have o-cluster points on the unit sphere S = {x € X : |jz]| =1}.

In many applications it has a sense to weaken the requirement on efficient
solutions to the vector optimization problem (Xy, f, A, 7). In particular, we may
let the objective mapping to attain its efficient infimum on the set Xy with some
error. On the other hand, the set of (A, 7)-efficient solutions to such problem can
possibly be empty, i.e., the efficient infimum of the objective mapping is often
unattainable on the given set Xy. Nevertheless, the absence of its infimum does
not mean that the vector optimization problem makes no sense, since its efficient
infimum exists and hence can be approached with some accuracy.

Definition 14. We say that a sequence {z}r-; C Xp is minimizing to the vector
optimization problem (Xp, f,A,7), if f(x;) = € in Y, where £ is an element of

A, T
Inf:ceXa (z).

Definition 15. We say that the vector optimization problem (Xy, f, A, 7) is well-
posed in the Tikhonov sense with respect to the o-topology of X if it is solvable
and every minimizing sequence {z;},-; C Xp has a subsequence o-converging to
some element of Eff;(Xp; f; A). In this case a minimizing sequence is called a
Tikhonov minimizing sequence. We also say that the vector optimization problem
(Xo, f, A, 7) is well-set in the Tikhonov sense with respect to the o-topology of X,
if it is solvable and every minimizing sequence contained in Xy \ Eff;(Xy; f; A)
has a o-cluster point in Eff/(Xp; f; A).

Note that having a Tikhonov minimizing sequence, we can guarantee both
the proximity of the corresponding values of the objective mapping to its efficient
infimum and the proximity of the approximation itself to one of the (A,7)-
efficient solutions of the problem. Nevertheless it should be stressed that even
in simple applied problems the construction of Tikhonov minimizing sequences
and corresponding Tikhonov approximate solutions usually turns out to be a very
complicated and sometimes unsolvable problem. In view of this, it is reasonable
to weaken the requirements on approximate solutions to the vector optimization
problem (Xg, f,A, 7).

Definition 16. We say that an element z* € Xj is the (o, 7)-generalized solution
to vector optimization problem (3.2), if there exist a sequence {zy}r-; C Xy and

AT f(x) such that 2 2 2* in X and f(z) = £in Y.

an element § € Inf X,

Thus, a vector optimization problem may have an approximate solution even
in the absence of its solvability. It is clear that any Tikhonov approximate solution
to the problem (Xy, f, A, 7) is also a (o, 7)-generalized solution. However, even if a
(A, 7)-efficient solution is available (z¢// € Eff.(Xy; f; A)), we cannot guarantee
the proximity of an (o, 7)-generalized solution z* to Eff;(Xp; f; A) in the o-
topology of X.

We denote by GenEff,  (Xp; f; A) the set of all (o, 7)-generalized solutions
to the problem (Xy, f, A, 7). It is clear that

Eff.(Xas; f; A) C GenEff, - (Xs; f; A).
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Moreover, as evident consequence of Theorem 1, we have the following obvious
result:

Proposition 4. Under suppositions of Theorem 1, the vector optimization prob-
lem (Xy, f, A, 7) is well-set in the Tikhonov sense with respect to the topology of
X, and in addition GenEff, - (Xp; f; A) = Eff -(Xp; f; A).

However, as the next example indicates, the inverse inclusion
GenEffo-(Xo; f; A) C Eff(Xp; f3 A)

does not generally hold.

Ezample 8. Let Xg = {z € X : ||| < 1} be a unit ball in a Banach space X, let
Y = R? be partially ordered with the cone A = Ri of positive elements in R2.
Let the mapping f : Xs — R? be defined by

1+ [l

fla) = [Hux”] if 2 € Xp\ {0x US).

1 2
fa)=[y] tres ro0 =7,
where S = {z € X : ||z|| = 1} is the unite sphere in X. We endow the spaces X

ZZ

Fig. 9. The set f(X»s) to Example 8

and Y with the weak (o) and the strong (7) topologies, respectively. Since

Miny (f(X5)) = {M , m} and Miny (cl; f(Xy)) = {m}

it follows that Min(Xp, f,A) = {0x} U S whereas Eff -(Xg; f; A) = 0. However,
the set of (o, 7)-generalized solutions to the problem (Xp, f, A, 7) is non-empty.
Indeed, let us fix a sequence {zy}ro; C Xy such that

o i x ana fio0—{[1]}.

Then, following Definition 16, we have

Ox € GenEﬂ‘mT(Xa; I A)
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and, in fact,
GenEff, - (Xp; f; A) = {0x}.

Having taken A\* = [é], we consider the following scalar problem associated
with the vector problem (Xy, f, A, 7):

1+ [z, if ||z]] <1 and = # Ox,
(@) == (f(2), N)ge = Lo if [zl =1, (5.2)
2, if ©=0x

Straightforward calculations show that

Argmin fy(z) ={z € Xy : ||| =1}.
x€Xp

As a result, we have

GenEff, - (Xp; f; A) N Argmin fy(x) = 0.

zeXp

Thus, any solution of the scalar problem (5.2) is neither a (A, 7)-efficient solution
nor a generalized one to the vector problem (Xy, f, A, 7). Thus, in view of Defini-
tion 15, (Xy, f,A,7) can be characterized as the ill-posed vector optimization
problem.

To obtain the sufficient conditions which would guarantee that the set of
(0, 7)-generalized solutions to the problem (Z,I,A,7) is non-empty, we use the
scalarization of this problem in the form (4.2).

Let sc, fy : Xg — R denote the lower o-semicontinuous envelope of the
functional fy(xz) = (f(x),A)y.,, with some A € K, that is, sc; f is the greatest
lower o-semicontinuous functional majorized by f) on Xy. Then, following the
direct method in the Calculus of Variations, we get:

Proposition 5. Let Xy be a sequentially closed subset of a linear topological
space (X,o). Assume that for a fixed A\ € K the functional sc; fy : X — R
is countably o-coercive, i.e. the o-closure of the set {z € Xy : sc; fua(z) <t}
is countably o-compact for every t € R. Then every minimizing sequence for
infzex, sc; fa(z) has a o-cluster point which is a minimum point of sc; f) on Xj,

i.e., Sol(Xy; scs fa) # 0.

Remark 8. It is clear that this theorem remains valid if instead of the countable
o-coerciveness of sc; fy on Xy we assume the sequential o-compactness of the set
X5.

Now we are able to prove the main result of this paper.

Theorem 4. Let X be a reflezive Banach space, o be the weak topology on X,
V' be a separable Banach space, and the Banach space Y = V* be endowed with
the weak-+ topology T and partially ordered with a pointed cone A = K*, where K
is a convex pointed cone in V with non-empty algebraic interior cor (K). Let also
Xo be a non-empty sequential o-compact subset of X, and let f : Xg — Y be a
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given mapping (not necessary (A, o X 7)-lower semicontinuous on Xg). Then the
following inclusion is valid:

U Argminsc, fi(z) C GenEff, - (Xs; f; A). (5.3)
Aekt TEXo

Proof. To begin with, we note that the convexity of the pointed cone K and
condition cor (K) # @ imply the inclusion cor (K) C K* (see [11]). Hence the
quasi interior K* of K is non-empty. Let A be any element of K* Then, by
Proposition 5, there exists at least one element z* € Xy such that

z* € Argminsc, fi(z). (5.4)
zeXy

Since sc, fa(x) is the lower o-semicontinuous envelope of the
@) = {f (@), Ny,v

it follows that there exists a sequence {x1}%°, C Xy such that z; ~ z* and

T (F(2), Ay = se; (e”) <
by condition (5.4)
< sy @) < (F@) Ny (5.5)

Va € Xp. Since K*UOy is a nontrivial convex cone in V with non-empty algebraical
interior, it follows that it is a reproducing cone in V', that is,

[Kﬂuov]—[Kﬁuov]:Lf

(see [11]). Then, following Peressini [17]| and Borwein |6], we have that in the dual
space Y = V* the ordering cone A = K™ is normal with respect to the norm
topology of Y, that is,

y<az = |yl <llzl (5.6)

Now, turning back to the formula (5.5), we get: there exist an integer k € N and
an element y € Y such that

(F@e), Ny < @ Ayy YE>E.

Since A € K*, this implies f(z) <a ¥ for all k > k. Using the normality property
(5.6) of the cone A for the norm topology of Y, we come to the conclusion: there
exists a constant ¢ > 0 such that

If(ze)ly <C  forall k> k.

Hence, without loss of generality, we may suppose that the sequence {f(zx)}re
is bounded in Y. So, by Banach-Alaoglu Theorem, there exist an element n € Y
and a subsequence of {f(zy)}7e; (still denoted by suffix k) such that f(zx) — 7
inY as k — oo.
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For now we assume that

z* ¢ GenEff, ;(Xa; f; A). (5.7)

Then, as follows from Definition 16, n ¢ Infi\gxa f(x). Hence, there can be found

an element & € Inff;’eTXa () such that & <p 1. Therefore, n — & € A\ {0y}, and

using the fact that A € K*, we just come to the inequality

<77a /\>Y;V > <£’ )‘>Y;V

which is equivalent to

im (f(zk), Ny, > (& Ay - (5.8)

k—o0

On the other hand, for the element £ € Inffv\gx6 f(z) there exists a sequence

{op}72, C Xy such that f(vr) — € in Y. Since the set Xj is sequentially o-
compact, we may suppose that vy — v* € Xp. Then, by inequality (5.5), we
deduce

im (f(zr), Ay,v < (f(vi), Ay, VieN. (5.9)

k—oo

Passing to the limit in (5.9) as i — oo, we get

lim <f(xk)7 )‘>Y;V < <£a A>Y;V :

k—o0

However, this contradicts (5.8) and hence (5.7). Thus, 2* is the (o, 7)-generalized
solution to vector optimization problem (Xy, f, A, 7). O
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