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ontinuity and make no assumptions on the interior of the ordering
one. We derive su�
ient 
onditions for existen
e of e�
ient solutions of the aboveproblems and dis
uss the role of topologi
al properties of the obje
tive spa
e.We dis
uss the s
alarization of ve
tor optimization problems when the obje
tivefun
tions are ve
tor-valued mappings with a weakened property of lower semi
on-tinuity. We also prove the existen
e of the so-
alled generalized e�
ient solutionsvia the s
alarization pro
ess. All prin
ipal notions and assertions are illustrated bynumerous examples.Key words. Ve
tor optimization problem, e�
ient solutions, obje
tive mapping, property oflower semi
ontinuity, generalized e�
ient solutions.1. Introdu
tionThe main goal of this paper is to dis
uss one 
lass of ve
tor optimizationproblems in Bana
h spa
es in the 
ase when the obje
tive ve
tor-valued mappingpossesses a weakened property of lower semi
ontinuity. The 
lassi
al setting ofve
tor optimization problems usually 
onsists in the investigation of �optimal�elements of a non-empty subset of a partially ordered obje
tive spa
e, where by�optimal� elements one mainly means the minimal elements or several variantsof this 
on
ept, for example, strongly minimal, properly minimal and weaklyminimal elements. Therefore, an important aspe
t in the ve
tor optimization isto �nd 
onditions whi
h guarantee existen
e of the so-
alled e�
ient solutions,whi
h are de�ned as inverse images of the minimal elements of the image set. Thefollowing result is well-known: if the image of admissible solutions in an obje
tiveBana
h spa
e is 
ompa
t then the set of e�
ient solutions is non-empty. Sin
e the
ompa
tness is a very restri
tive assumption, at least in an in�nite-dimensionalsetting, many authors have tried to weaken it. The typi
al way to do it is to endowthe obje
tive mapping with some lower semi
ontinuity properties. In the ve
tor-valued 
ase there are several possible ways to extend the �s
alar� notion of lower
© P. I. Kogut, R. Manzo, I. V. Ne
hay, 2009



62 P. I. KOGUT, R. MANZO, I. V. NECHAYsemi
ontinuity (see, for example, [3, 4, 5, 7, 8, 13, 16, 20℄). We 
ould mention thelower semi
ontinuity, quasi lower semi
ontinuity, and order lower semi
ontinuity.However, the above properties for the obje
tive fun
tions may fail at an e�
ientsolution, even for simple ve
tor optimization problems with non-empty solutionsets. This is an atypi
al situation for the s
alar 
ase
I(x∗) = inf {I(x) : x ∈ X} , (1.1)where ea
h solution x∗ is always a point of lower semi
ontinuity of the 
ostfun
tional I : X → R.The next problem, whi
h motivated our e�orts in this �eld, 
on
erns thefollowing observation: if the s
alar problem (1.1) has a non-empty set of solutions,then

inf {I(x) : x ∈ X} = min {I(x) : x ∈ X} = min [closure {I(x) : x ∈ X}] .However, in the 
ase of ve
tor optimization, the typi
al situation is:
Min(S) 6= ∅, Min [closure(S)] 6= ∅, and Min(S) ∩ Min [closure(S)] = ∅,where by Min(S) we symboli
ally denote the family of all minimal elements of asubset S.Thus our prime interest in this paper is to 
onsider ve
tor optimization prob-lems in a new setting, whi
h involves topologi
al properties of the obje
tive spa
e,and dis
uss the problem of their s
alarization. We deal with the 
ase when theobje
tive mappings take values in a real Bana
h spa
e Y partially ordered by apointed 
one Λ with possibly empty interior. In 
ontrast to the 
lassi
al settingof the ve
tor optimization problemMinimize f(x) with respe
t to the 
one Λ subje
t to x ∈ X∂ , f : X → Y,we study the problem in the following formulation:Realize InfΛ,τ

x∈X∂
f(x) (1.2)and asso
iate this problem with the quaternary 〈X∂ , f,Λ, τ〉, where the essential
ounterpart is the 
hoi
e of the topology τ on the obje
tive spa
e Y .We also extend the 
on
ept of lower semi
ontinuity to ve
tor-valued mappings,whi
h is 
ompatible with optimization problems in the form (1.2), and dis
ussthe existen
e of the so-
alled (Λ, τ)-e�
ient solutions to the problem (1.2). Inparti
ular, we show that the extended 
on
ept of lower semi
ontinuity does notfail at (Λ, τ)-e�
ient solutions, however the topologi
al properties of the spa
es

(X,σ) and (Y, τ), where this problem is 
onsidered, play an essential role. In viewof this, our main intension deals with the s
alarization of ve
tor optimizationproblems (1.2) with the so-
alled (Λ, σ×τ)-lower semi
ontinuous mappings, usingthe �simplest� method of the �weighted sum�. We show that in this 
ase one ofthe fundamental requirements on the s
alarizing ve
tor optimization problems(a

ording to Sawaragi et al. [18℄): solutions to the s
alarized optimization problemmust also be minimal solutions to the original ve
tor optimization problem, may



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 63not hold. Moreover, we show that for (Λ, σ × τ)-lower semi
ontinuous mappings
f : X∂ → Y a situation is possible, when none of the s
alar fun
tions, obtainedby �weighted sum�approa
h, is sequentially lower semi
ontinuous. For this reason,we extend the notion of (Λ, τ)-e�
ient solutions to the so-
alled generalizedsolutions of the ve
tor optimization problem. We study their main propertiesand derive su�
ient 
onditions when the generalized solutions 
an be obtainedvia the s
alarization pro
ess of (1.2).2. Notation and PreliminariesLet X and Y be two real Bana
h spa
es. We assume that X is re�exive and
Y is dual to some separable Bana
h spa
e V (that is Y = V ∗). We supposethat these spa
es are endowed with some topologies σ = σ(X) and τ = τ(Y ),respe
tively. By default σ is always asso
iated with the weak topology of X,whereas τ is asso
iated with the weak-∗ topology of Y . For a subset A ⊂ Y wedenote by intτ A and clτ A its interior and 
losure with respe
t to the τ -topology,respe
tively. We will omit this index if no 
onfusion may o

ur. Let Λ be a τ -
losed 
onvex pointed 
one in Y . No assumption is imposed on the topologi
alinterior of Λ. Throughout this paper, we suppose that Y is partially ordered withthe ordering 
one Λ. We denote with ≤Λ a partial ordering introdu
ed by the 
one
Λ, that is, for any elements y, z ∈ Y , we will write y ≤Λ z whenever z ∈ y + Λand y <Λ z for y, z ∈ Y , if z− y ∈ Λ \{0Y }. We say that a sequen
e {yk}∞k=1 ⊂ Yis de
reasing and we use the notation yk ց whenever, for all k ∈ N, we have
yk+1 ≤Λ yk. We also say that a sequen
e {yk}∞k=1 ⊂ Y is bounded below if thereexists an element y∗ ∈ Y su
h that y∗ ≤Λ yk for all k ∈ N.For the investigation of �optimal� elements of a non-empty subset S of thepartially ordered spa
e Y one is mainly interested in minimal or maximal elementsof S.De�nition 1. (see [11℄) An element y∗ ∈ S ⊂ Y is said to be minimal of the set
S, if there is no y ∈ S su
h that y ≤Λ y

∗, y 6= y∗, that is
S ∩ (y∗ − Λ) = {y∗}.De�nition 2. (see [11℄) An element y∗ ∈ S ⊂ Y is said to be weakly minimal ofthe set S, if
S ∩ (y∗ − cor(Λ)) = ∅,where by cor (Λ) we denote the algebrai
 interior of Λ, that is,

cor (Λ) := {ẑ ∈ V | ∀ z ∈ V there is an α̂ > 0 with
ẑ + αz ∈ Λ for all α ∈ [0, α̂]} .Let MinΛ(S) denote the family of all minimal elements of S. We say that anelement y∗ is the ideal minimal point (or a strongly minimal element) of the set

S, if y∗ ∈ S and y∗ ≤Λ y for every y ∈ S.Let us introdu
e two singular elements −∞Λ and +∞Λ in Y . We assume thatthese elements satisfy the following 
onditions:1)−∞Λ � y � +∞Λ, ∀y ∈ Y ; 2)+ ∞Λ + (−∞Λ) = 0Y .



64 P. I. KOGUT, R. MANZO, I. V. NECHAYLet Y • denote a semi-extended Bana
h spa
e: Y • = Y ∪ {+∞Λ} assuming that
‖ + ∞Λ‖Y = +∞ and y + λ(+∞Λ) = +∞ ∀ y ∈ Y and ∀λ > 0.The following 
on
ept is a 
ru
ial point in this paper.De�nition 3. We say that a set E is the e�
ient in�mum of a set S ⊂ Y withrespe
t to the τ topology of Y (or shortly (Λ, τ)-in�mum) if E is the 
olle
tionof all minimal elements of clτ S in the 
ase when this set is non-empty, and E isequal to {−∞Λ} otherwise.Hereinafter we denote the (Λ, τ)-in�mum for S by InfΛ,τ S. Thus, in view ofthe de�nition given above, we have

InfΛ,τ S :=

{
MinΛ(clτ S), MinΛ(clτ S) 6= ∅
−∞Λ, MinΛ(clτ S) = ∅.The following example shows the signi�
an
e of this de�nition and 
omparesit with the notion of minimal elements.Example 1. Let Y = R2 and let Λ = R2

+ be the natural ordering 
one of positiveelements in R2. Suppose that the set S ⊂ Y is given as S = ∪3
i=1Xi, where

X1 =
{
z ∈ R2 : z1 ≥ 1, z2 > 3, z1 + z2 ≤ 5

}
,

X2 =
{
z ∈ R2 : z1 > 2, z2 > 2, z1 + z2 ≤ 5

}
,

X3 =
{
z ∈ R2 : z1 > 3, z2 ≥ 4, z1 + z2 ≤ 5

}
,

X4 = {(2; 3), (3; 2)}(see Fig. 1). It is essential that the set S is not 
losed. Then the set MinΛ(S) of

Fig. 1. The set S in Example 1all minimal elements of S is given as
MinΛ(S) = {(2; 3), (3; 2)} ,whereas the (Λ, τ)-in�mum of the S reads as

InfΛ,τ (S) = {(1; 3), (2; 2), (3; 1)} ,



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 65where τ is the strong topology of R2. Consequently, in 
ontrast to the s
alar 
asewhere the in
lusion MinΛ(S) ⊆ InfΛ,τ S is always true, we have:
InfΛ,τ (S) 6= ∅, MinΛ(S) 6= ∅, and InfΛ,τ (S) ∩ MinΛ(S) = ∅.Let X∂ be a non-empty subset of the Bana
h spa
e X, and f : X∂ → Y besome mapping. Note that the mapping f : X∂ → Y 
an be asso
iated with itsnatural extension f̂ : X → Y • to the whole spa
e X, where

f̂(x) =

{
f(x), x ∈ X∂ ,
+∞Λ, x /∈ X∂ .Following [1℄ a mapping f : X∂ → Y • is said to be bounded below if thereexists an element z ∈ Y su
h that z ≤Λ f(x) for all x ∈ X∂ .De�nition 4. A subset A of Y is said to be the e�
ient in�mum of a mapping

f : X∂ → Ywith respe
t to the τ -topology of Y and is denoted by InfΛ,τ
x∈X∂

f(x), if A is the
(Λ, τ)-in�mum of the image f(X∂) of X∂ in Y , that is,

InfΛ,τ
x∈X∂

f(x) = InfΛ,τ {f(x) : ∀x ∈ X∂} .Remark 1. It is 
lear now that if a ∈ InfΛ,τ
x∈X∂

f(x) then
clτ {f(x) : ∀x ∈ X∂} ∩ (a− Λ) = {a}provided MinΛ [clτ {f(x) : ∀x ∈ X∂}] 6= ∅.Let {yk}∞k=1 be a sequen
e in Y . Let Lτ{yk} denote the set of all its 
lusterpoints with respe
t to the τ -topology of Y , that is, y ∈ Lτ{yk} if there is asubsequen
e {yki

}∞i=1 ⊂ {yk}∞k=1 su
h that yki

τ−→ y in Y as i→ ∞. If this set islower unbounded, i.e., InfΛ,τ Lτ{yk} = −∞Λ, we assume that {−∞Λ} ∈ Lτ{yk}.If SupΛ,τ Lτ{yk} = +∞Λ, we assume that {+∞Λ} ∈ Lτ{yk}. Let x0 ∈ X∂ be a�xed element. In what follows for an arbitrary mapping f : X∂ → Y we makeuse of the following sets:
Lσ×τ (f, x0) :=

⋃

{xk}
∞
k=1∈Mσ(x0)

Lτ{f̂(xk)}, (2.1)
Lσ×τ

min (f, x0) := Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x), (2.2)where Mσ(x0) is the set of all sequen
es {xk}∞k=1 ⊂ X su
h that xk → x0 withrespe
t to the σ-topology of X. To illustrate the 
hara
teristi
 features of the set
Lσ×τ

min (f, x0), we give the following example.Example 2. Let X∂ = [1; 3], Y = R2, and let Λ = R2
+ be the ordering 
one ofpositive elements. We de�ne a ve
tor-valued mapping f : X∂ → Y as follows:

f(x) =

{ [x
2

]
, x 6= 1,

[
2
1

]
, x = 1.

(2.3)
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1 3 1 2 3

1

2

f

X∂

X∂

f(    )

Fig. 2. Illustration of the set Lσ×τ
min (f, x0)(see Fig. 2). Then

Lσ×τ (f, x0) = {f(x0)} ∀x0 ∈ (1; 3],

Lσ×τ (f, 1) =

{[
1

2

]
;

[
2

1

]}
, and InfΛ,τ

x∈X∂
f(x) =

{[
1

2

]
;

[
2

1

]}Therefore, Lσ×τ
min (f, x0) = ∅ in the 
ase when x0 ∈ (1; 3], and

Lσ×τ
min (f, 1) =

{[
1

2

]
;

[
2

1

]}
.Remark 2. It is easy to see that the set Lσ×τ

min (f, x0) 
an be alternatively de�nedas
Lσ×τ

min (f, x0) =
{
y∗ ∈ Lσ×τ (f, x0) if f(xk)

τ→ y∗,

f(xk) ≤Λ y
∗ ∀k ∈ N, ∀xk

σ→ x0

}
. (2.4)Now we are able to introdu
e the notion of the lower limit for the ve
tor-valuedmappings.De�nition 5. We say that a subset A ⊂ Y ∪ {±∞Λ} is the Λ-lower sequentiallimit of the mapping f : X∂ → Y at the point x0 ∈ X∂ with respe
t to theprodu
t topology σ× τ of X ×Y , and we use the notation A = lim infΛ,τ

x
σ
→ x0

f(x),if
lim infΛ,τ

x
σ
→x0

f(x) :=

{
Lσ×τ

min (f, x0), Lσ×τ
min (f, x0) 6= ∅,

InfΛ,τ Lσ×τ (f, x0), Lσ×τ
min (f, x0) = ∅.

(2.5)Remark 3. Note that in the s
alar 
ase (f : X∂ → R) the sets
InfΛ,τ

x∈X∂
f(x) and InfΛ,τ Lσ×τ (f, x0)are singletons. Therefore, if Lσ×τ

min (f, x0) 6= ∅ then we have
Lσ×τ

min (f, x0) = Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x)

= InfΛ,τ Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x)

= InfΛ,τ Lσ×τ (f, x0).Hen
e the 
hoi
e rules in (2.5) 
oin
ide and we 
ome to the 
lassi
al de�nition ofthe lower limit.
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ru
ial role of the 
onditions
Lσ×τ

min (f, x0) 6= ∅ and Lσ×τ
min (f, x0) = ∅in De�nition (5), we give the following example.Example 3. Under assumptions of Example 2 we 
onsider the mapping f : X∂ →

Y de�ned as follows (see Fig. 3):
1 3 1 2 3

1

2

f

X∂

X∂

f(    )

Fig. 3. Illustration of De�nition 5 in Example 3
f(x) =

{ [x
1

]
, x 6= 1,

[1
2

]
, x = 1.

(2.6)Let us de�ne the Λ-lower sequential limit of f : X∂ → Y at two points: �rstly at
x0 = 1, and after at x0 6= 1. Then dire
t 
al
ulations show that

InfΛ,τ
x∈X∂

f(x) =

{[
1

1

]}
, Lσ×τ (f, 1) =

{[
1

2

]
;

[
1

1

]}
, and

Lσ×τ (f, x0) =
{[x0

1

]}
∀x0 ∈ (1; 3].Hen
e, sin
e

Lσ×τ
min (f, x0) := InfΛ,τ

x∈X∂
f(x) ∩ Lσ×τ (f, x0) = ∅ for every x0 ∈ (1; 3],it follows that

lim infΛ,τ

x
σ
→x0

f(x) = InfΛ,τ
{[x0

1

]}
=
{[x0

1

]}
.At the same time, in the 
ase when x0 = 1, we have

Lσ×τ
min (f, 1) := InfΛ,τ

x∈X∂
f(x) ∩ Lσ×τ (f, 1) =

{[
1

1

]}
.As a result, we 
on
lude:

lim infΛ,τ

x
σ
→ 1

f(x) = Lσ×τ
min (f, 1) =

{[
1

1

]}
.
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tor optimization problemsLet X∂ be a non-empty σ-
losed subset of the re�exive Bana
h spa
e X.Let Y be a partially ordered Bana
h spa
e with a τ -
losed pointed ordering 
one
Λ ⊂ Y . Let f : X∂ → Y be a given mapping. Then the typi
al ve
tor optimizationproblem 
an be stated in general manner as follows:Minimize f(x) with respe
t to the 
one Λsubje
t to x ∈ X∂ .

} (3.1)Usually this problem is asso
iated with the triplet 〈X∂ , f,Λ〉, where the set X∂ is
alled the set of admissible solutions to the problem (3.1). The problem 
onsists indetermining minimal (or weakly minimal) solutions xmin ∈ X∂ whi
h are de�nedas the inverse image of the minimal (or weakly minimal) elements of the image set
f(X∂) in the sense of De�nition 1 (or De�nition 2, respe
tively). Let Min(X∂ , f,Λ)and WMin(X∂ , f,Λ) denote the sets of minimal and weakly minimal solutions tothe problem (3.1), respe
tively. It is 
lear that the notions �minimal�and �weaklyminimal�are 
losely related, moreover, the following in
lusion is obvious

Min(X∂ , f,Λ) ⊆ WMin(X∂ , f,Λ).However, the 
on
ept of weak minimality is rather of theoreti
al interest, and itis not an appropriate notion for applied problems.In 
ontrast to (3.1) we will 
onsider the ve
tor optimization problems in thefollowing form: Realize InfΛ,τ
x∈X∂

f(x), (3.2)where the operator InfΛ,τ
x∈X∂

is de�ned in De�nition 4. Note that in this 
ase theoptimization problem (3.2) 
an be asso
iated with the quaternary
〈X∂ , f,Λ, τ〉 , (3.3)whi
h indi
ates that the essential 
omponent of this setting is the 
hoi
e of the

τ -topology on the obje
tive spa
e Y .Remark 4. It is 
lear that ve
tor optimizations problems (3.1) and (3.2) areidenti
al in the 
ase when Y = R and Λ = R+, and they lead to the 
lassi
alsetting of a s
alar 
onstrained minimization problem. However, in general, thereis a prin
ipal di�eren
e between the mentioned setting of ve
tor optimizationsproblems. First, as follows from (3.2), it is natural to say that an element x∗ ∈ X∂is a solution to the problem (3.2) if
f(x∗) ∈ InfΛ,τ

x∈X∂
f(x). (3.4)Hen
e, f(x∗) ∈ MinΛ (clτf(X∂)). Sin
e f(x∗) ∈ f(X∂) it follows that

f(x∗) ∈ MinΛ f(X∂).Therefore, x∗ is a minimal solution to the problem (3.1), i.e. x∗ ∈ Min(X∂ , f,Λ).However, as follows from Example 4 given below, the 
onverse statement is not
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al for the s
alar 
ase when wealways have the impli
ationif f(x∗) = min
x∈X∂

f(x), then x∗ ∈ X∂ and f(x∗) = inf
x∈X∂

f(x).On the other hand, as follows from De�nition 4, the problem (3.2), and hen
e theset of its solutions, essentially depend on the properties of the τ -topology of theobje
tive spa
e Y . Thereby, the problems (3.1) and (3.2) are essentially di�erent.We introdu
e now the following 
on
ept.De�nition 6. An element xeff ∈ X∂ is said to be a (Λ, τ)-e�
ient solution tothe problem (3.2) if xeff realizes the (Λ, τ)-in�mum of the mapping f : X∂ → Y ,that is,
f(xeff ) ∈ InfΛ,τ

x∈X∂
f(x) = InfΛ,τ {f(x) : ∀x ∈ X∂} .We denote by Effτ (X∂ ; f ; Λ) the set of all (Λ, τ)-e�
ient solutions to theve
torial problem (3.2), i.e.

Effτ (X∂ ; f ; Λ) =
{
xeff ∈ X∂ : f(xeff ) ∈ InfΛ,τ

x∈X∂
f(x)

}
. (3.5)Taking into a

ount the motivation of Remark 4, we 
ome to the following obviousresult:Proposition 1. Let X and Y be two Bana
h spa
es, let X∂ be a non-emptysubset of X, and let f : X∂ → Y be an obje
tive mapping. Assume that the spa
e

Y is partially ordered by a τ -
losed pointed 
one Λ ⊂ Y . Then the solution setsto the problems (3.1) and (3.2) satisfy the relation
Effτ (X∂ ; f ; Λ) ⊆ Min(X∂ , f,Λ).The sets Effτ (X∂ ; f ; Λ) and Min(X∂ , f,Λ) do not 
oin
ide in general. Toillustrate this fa
t, we give the following example.Example 4. ( see [12℄) Let X = Y = R2 and let Λ = R2

+ be the ordering 
one ofpositive elements. We suppose that a ve
tor-valued mapping f : X → Y and aset of admissible solutions X∂ are su
h that f(x) = x and X∂ = ∪4
i=1Xi, where

X1 =
{
z ∈ R2 : z1 ≥ 1, z2 > 3, z1 + z2 ≤ 5

}
,

X2 =
{
z ∈ R2 : z1 > 2, z2 > 2, z1 + z2 ≤ 5

}
,

X3 =
{
z ∈ R2 : z1 > 3, z2 ≥ 4, z1 + z2 ≤ 5

}
,

X4 = {(2; 3), (3; 2), (3; 1)}(see Fig. 4). Then straightforward 
al
ulations show that
MinΛ(f(X∂)) =

{[
2

3

]
,

[
3

1

]}
, InfΛ,τ (f(X∂)) =

{[
1

3

]
,

[
2

2

]
,

[
3

1

]}
.Hen
e

Effτ (X∂ ; f ; Λ) =

{[
3

1

]}
, Min(X∂ , f,Λ) =

{[
2

3

]
,

[
3

1

]}
.



70 P. I. KOGUT, R. MANZO, I. V. NECHAY

Fig. 4. The image of the set X∂ in Example 4The aim of this se
tion is to obtain an existen
e theorem of the (Λ, τ)-e�
ientsolutions for a ve
tor optimization problem (3.2), that is, to �nd su�
ient 
ondi-tions whi
h guarantee the relation Effτ (X∂ ; f ; Λ) 6= ∅. Let f̂ : X → Y • denotethe natural extension of f : X∂ → Y to the whole X. We begin with the following
on
ept of lower semi
ontinuity for ve
tor-valued mappings.De�nition 7. We say that a mapping f : X∂ → Y is (Λ, σ × τ)-lower semi
onti-nuous ((Λ, σ × τ)-ls
) at the point x0 ∈ X∂ if
f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f̂(x).A mapping f is (Λ, σ × τ)-ls
 if f is (Λ, σ × τ)-ls
 at ea
h point of X∂ .The main motivation to introdu
e this 
on
ept is the following observation.Proposition 2. Let X be a Bana
h spa
e, and let Y be a partially orderedBana
h spa
e with an ordering τ -
losed pointed 
one Λ. Moreover, let X∂ be anon-empty subset of X and let f : X∂ → Y be a given mapping. If x0 ∈ X∂ isany (Λ, τ)-e�
ient solution to the problem (3.2), then the mapping f : X∂ → Yis (Λ, σ × τ)-ls
 at this point for any Hausdor� topology σ on X.Proof. Let x0 ∈ Effτ (X∂ ; f ; Λ). Then f(x0) ∈ InfΛ,τ
x∈X∂

f(x). On the other hand
f(x0) ∈ Lσ×τ

min (f, x0)for any Hausdor� topology σ on X. Hen
e
f(x0) ∈ Lσ×τ

min (f, x0).As a result, by De�nition 5, we have
f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f(x).This 
on
ludes the proof.
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eeding further, we note that the 
on
ept of (Λ, σ×τ)-lower semi
on-tinuity for the ve
tor-valued mappings, given above, is more general than wellknown extensions of the �s
alar� notion of lower semi
ontinuity to the ve
tor-valued 
ase (see, for example, [3, 4, 5, 7, 8, 13, 16℄). We re
all now a few mainde�nitions of lower semi
ontinuity of ve
tor-valued mappings with respe
t to theprodu
t topology σ × τ on X × Y , introdu
ed in [7, 8, 10, 19℄.De�nition 8. (see [8℄) A mapping f : X → Y • is said to be sequentially lowersemi
ontinuous (s-ls
) at x0 ∈ X, if for any y ∈ Y satisfying y ≤Λ f(x0) and forany sequen
e {xk}∞k=1 of X σ-
onvergent to x0, there exists a sequen
e {yk}∞k=1 ⊂
Y τ -
onverging to y in Y and satisfying 
ondition yk ≤Λ f(xk), for any k ∈ N.De�nition 9. (see [7℄) A mapping f : X → Y • is said to be quasi lowersemi
ontinuous (q-ls
) at x0 ∈ X, if for ea
h b ∈ Y su
h that b �Λ f(x0), thereexists a neighborhood O of x0 in the σ-topology of X su
h that b �Λ f(x) forea
h x in O.A mapping f is s-ls
 (resp., q-ls
) if f is s-ls
 (resp., q-ls
) at ea
h point of
X. It is 
lear that the s-ls
-property of f at x implies its q-ls
 at this point. To
hara
terize the properties of (Λ, σ × τ)-lower semi
ontinuity more pre
isely, wegive the following result.Proposition 3. (see [12℄) If a mapping f : X∂ → Y is q-lower semi
ontinuous at
x0 ∈ X∂ with respe
t to the σ× τ -topology on X × Y , then f is (Λ, σ × τ)-lowersemi
ontinuous at this point.As a 
onsequen
e of this result and the properties of quasi-lower semi
ontinuity,we have: if f is s-ls
 then f is (Λ, σ × τ)-ls
. However, in general, (Λ, σ × τ)-ls
ontinuity of the ve
tor-valued mappings does not imply their q-ls
 property.Indeed, let us 
onsider the following example.Example 5. Let Xad = [−3,−1], Y = R2, and let Λ = R2

+ be the ordering 
oneof positive elements. We de�ne a ve
tor-valued mapping f : Xad → Y as follows(see Fig. 5):
f(x) =

{ [−x
2

]
, x 6= −1,

[2
1

]
, x = −1.

(3.6)Let x0 = −1. Then
f(x0) =

[
2

1

]
, lim infΛ,τ

x
σ
→ x0

f̂(x) =

{[
2

1

]
,

[
1

2

]} (3.7)(see Fig. 5). Let us take b =
[1,5

3

]. Obviously b �Λ f(x0) and there is noneighborhood of the point x0 su
h that b �Λ f(x) for all x from this neighborhood.Hen
e, this mapping is neither q-ls
 nor ls
 mapping at the point x0. However,by (3.7), we have the in
lusion
f(x0) ∈ lim infΛ,τ

x
σ
→x0

f̂(x).Hen
e, f is the (Λ, σ × τ)-lower semi
ontinuous mapping at x0 = −1.



72 P. I. KOGUT, R. MANZO, I. V. NECHAY
F

y

yx-3 -1 1 2 3
1

2

X
¶

( )F X
¶

b

b - L

0( )+F x L

Fig. 5. The example of (Λ, σ × τ )-ls
 mapping whi
h is neither s-ls
 nor q-ls
 mappingBefore going on further, we pres
ribe some additional properties to the ordering
one Λ.De�nition 10. Let (Y, τ) be a real topologi
al linear spa
e with an ordering 
one
Λ. The 
onvex 
one Λ is 
alled Daniell, if for every de
reasing net (i.e. i ≤ j =⇒
yj ≤Λ yi), whi
h is lower bounded, τ -
onverges to its (Λ, τ)-in�mum.Condition ensuring the Daniall property are given by the next lemma.Lemma 1. Let (Y, τ) be a real topologi
al linear spa
e with an ordering 
one Λ. If
Y has 
ompa
t intervals [−z, z] and Λ is τ -
losed and pointed, then Λ is Daniell.For this result see Borwein [6℄. A typi
al example of Daniell 
one with respe
tto the weak topology of Lp(Ω) (1 < p < +∞) is the so-
alled natural ordering
one in Lp(Ω) whi
h is de�ned as

ΛLp(Ω) = {f ∈ Lp(Ω) : f(x) ≥ 0 almost everywhere on Ω} .De�nition 11. We say that a non-empty subset Y0 of a real topologi
al spa
e
(Y, τ) with an ordering 
one Λ is lower semibounded if every de
reasing net {yi} ⊂
Y0 is bounded from below.As a dire
t 
onsequen
e of De�nition 11, we have the following observation.Remark 5. Let Y0 be a lower semibounded subset of a partially ordered lineartopologi
al spa
e Y with a τ -
losed ordering 
one Λ. Then, for any z ∈ Y0the se
tion Y z

0 = ({z} − Λ) ∩ Y0 of Y0 is bounded from below, that is, thereexists an element z∗ ∈ Y su
h that z∗ ≤Λ y for all y ∈ Y z
0 . Hen
e, the lowersemiboundedness of a subset Y0 implies the lower semiboundedness of its τ -
losure

clτ Y0.Now we are ready to formulate the main result of this se
tion.Theorem 1. Let (X,σ) and (Y, τ) be two real topologi
al linear spa
es, and let Ybe partially ordered with the τ -
losed pointed Daniell 
one Λ. Moreover, let X∂ bea non-empty sequentially σ-
ompa
t subset of X and let f : X∂ → Y be a given
(Λ, σ × τ)-lower semi
ontinuous mapping. Then the ve
tor optimization problem(3.2) has a non-empty set of (Λ, τ)-e�
ient solutions.



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 73Remark 6. Before the proof, we note that in 
ontrast to the s
alar 
ase for ve
toroptimization problem (3.2) with a sequentially σ-
ompa
t subset ofX∂ and (Λ, σ×
τ)-lower semi
ontinuous obje
tive mapping f : X∂ → Y , the image set f(X∂) 
anbe unbounded from below. It means that, in general, there does not exist anelement y∗ ∈ Y su
h that f(X∂) ⊂ {y∗}+Λ. Indeed, let us 
onsider the followingexample: let X = R, X∂ = [0; 1], Y = R2, and let Λ = R2

+ be the ordering 
oneof positive elements. We suppose that a ve
tor-valued mapping f : X → Y isde�ned as follows:
f(x) =

[−1/x

1/x

] if x ∈ [0; 1), and f(1) =

[−2

0

]
.Sin
e

Lσ×τ (f, 1) =

{[−2

0

]
,

[−1

1

]} and InfΛ,τ
x∈X∂

f(x) =

{[−2

0

]}
,it follows that

lim infΛ,τ

x
σ
→ 1

f̂(x) =

{[−2

0

]}
.Hen
e this mapping is (Λ, σ× τ)-lower semi
ontinuous on X∂ . However the imageset f(X∂) is unbounded from below (see Fig. 6).

Fig. 6. The example of (Λ, σ × τ )-ls
 mapping with lower unbounded imageProof. Sin
e the proof of this theorem is rather te
hni
al, we divide it into severalsteps.Step 1. First we show that the image set f(X∂) is lower semibounded in thesense of De�nition 11. Indeed, let us assume the 
onverse. Then, there exists asequen
e {xk}∞k=1 ⊂ X∂ su
h that the 
orresponding image sequen
e
{yk = f(xk)}∞k=1 ⊂ f(X∂)is de
reasing (i.e., yk+1 ≤Λ yk ∀ k ∈ N) and unbounded from below in Y . Hen
e

−∞Λ ∈ Lτ {yk}, where Lτ {yk} denotes the set of all its 
luster points with respe
tto the τ -topology of Y . By the initial assumptions, the family {xk}∞k=1 ⊂ X∂ issequentially σ-
ompa
t, so we may suppose that xk
σ→ x∗ in X, where x∗ is some
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e the sequen
e {f(xk)}∞k=1 is unbounded from below, we have
{−∞Λ} ∈ Lσ×τ

min (f, x∗). Hen
e, by De�nition 5,
lim infΛ,τ

x
σ
→x∗

f(x) = {−∞Λ} .On the other hand, taking into a

ount the (Λ, σ×τ)-lower semi
ontinuity propertyof f , we obtain
f(x∗) ∈ lim infΛ,τ

x
σ
→ x∗

f(x)whi
h 
ontradi
ts the previous 
on
lusion. This proves Step 1.Step 2. Let us prove that the set InfΛ,τ
x∈X∂

f(x) is non-empty. We show thatthere exists at least one de
reasing sequen
e {yk}∞k=1 ⊂ f(X∂) su
h that
yk

τ→ y∗ ∈ InfΛ,τ
x∈X∂

f(x) = InfΛ,τ {f(x) : ∀x ∈ X∂} .Let y be an arbitrary element of clτ f(X∂). To begin with, we show that for anyneighbourhood of zero Vτ in (Y, τ) there exists an element yV ∈ clτ f(X∂) su
hthat
yV ≤Λ y and ({

yV
}
− Λ \ {0Y }

)
∩
(
clτ f(X∂) \ (Vτ +

{
yV
}
)
)

= ∅. (3.8)Having assumed the 
onverse, we suppose the existen
e of a sequen
e
{yk}∞k=1 ⊂ clτ f(X∂)su
h that

y1 ∈ f(X∂), yk+1 ∈ ({yk} − Λ \ {0Y }) ∩ (clτ f(X∂) \ (Vτ + {yk})) ∀ k ∈ N.Sin
e yk+1 ∈ {yk} − Λ \ {0Y }, this sequen
e is de
reasing. Taking into a

ountRemark 5, the set clτ f(X∂) is lower semibounded. Therefore, there exists anelement y∗ ∈ Y su
h that y∗ ≤Λ yk for all k ∈ N. Hen
e, by Daniell property, thissequen
e τ -
onverges to its (Λ, τ)-in�mum: yk
τ→ ỹ ∈ Y . However this 
ontradi
tsthe 
ondition

yk+1 ∈ clτ f(X∂) \ (Vτ + {yk}) ∀ k ∈ N.Thus the 
hoi
e by the rule (3.8) is possible for any neighbourhood Vτ .Let {Vk}∞k=1 be a neighbourhood system of zero in (Y, τ) su
h that Vk+1 ⊂ Vkfor every k ∈ N, and for any neighbourhood V(0Y ) in (Y, τ) there is an integer
k∗ ∈ N su
h that Vk∗ ⊆ V(0Y ). Then, using the 
hoi
e rule (3.8), we 
an 
onstru
ta sequen
e {uk}∞k=1 ⊂ clτ f(X∂), where u1 is an arbitrary element of f(X∂), asfollows
uk+1 ≤Λ uk and ({uk} − Λ \ {0Y })∩

∩ (clτ f(X∂) \ (Vk + {uk})) = ∅ ∀ k ≥ 1. (3.9)Sin
e uk+1 ∈ {uk} − Λ it follows that
uk+1 ∈ clτ f(X∂) and uk+1 6∈ clτ f(X∂) \ (Vk + {uk}).
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e, in view of Daniell property, {uk}∞k=1 is the τ -
onverging de
reasing sequen-
e. As a result, there is an element
u∗ ∈ InfΛ,τ {uk ∈ clτ f(X∂) : ∀ k ∈ N}su
h that uk

τ→ u∗. It is 
lear that u∗ ∈ clτ f(X∂). Our aim is to prove that
u∗ ∈ InfΛ,τ {f(x) : ∀x ∈ X∂}. To do this, we assume that there exists an element

q ∈ InfΛ,τ {f(x) : ∀x ∈ X∂}su
h that q ≤Λ u∗. Sin
e u∗ ≤Λ uk for all k ∈ N , it follows that q ≤Λ uk for all
k ∈ N . Then (3.9) ensures that

({q} − Λ \ {0Y }) ∩ (clτ f(X∂) \ (Vk + {uk})) = ∅ ∀ k ∈ N. (3.10)Hen
e (3.10) and the fa
t that q ∈ clτ f(X∂) imply q ∈ Vk +{uk} for every k ∈ N,that is, uk
τ→ q in Y . Thus u∗ = q and this 
on
ludes the Step 2.Step 3: We show that the set Effτ (X∂ ; f ; Λ) is non-empty. Let ξ be any elementof InfΛ,τ

x∈X∂
f(x). Then, by De�nition 4, there exists a sequen
e {yk}∞k=1 ⊂ Y su
hthat yk

τ−→ ξ in Y . We de�ne a sequen
e {xk}∞k=1 ⊂ X∂ as follows xk = f−1(yk)for all k ∈ N. Sin
e the set X∂ is sequentially σ-
ompa
t, we may suppose thatthere exists x0 ∈ X∂ su
h that xk
σ−→ x0 in X. Hen
e ξ ∈ Lσ×τ (f, x0), and weget

Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x) 6= ∅.Then, due to the (Λ, σ × τ)-lower semi
ontinuity of the mapping f on X∂ andDe�nition 5, we obtain
f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f(x) = Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x).Thus, on the one hand,
f(x0) ∈ Lσ×τ (f, x0),whi
h implies the equality

f(x0) = ξ = τ− lim
k→∞

yk.On the other hand, ξ ∈ InfΛ,τ
x∈X∂

f(x). Hen
e, x0 ∈ Effτ (X∂ ; f ; Λ) and this
on
ludes the proof.4. Ve
tor optimization problems for (Λ, σ × τ)-lowersemi
ontinuous obje
tive mappings and their s
alarizationTypi
ally, s
alarization means the repla
ement of a ve
tor optimization prob-lem by a suitable s
alar optimization problem that is an optimization problemwith a real-valued obje
tive fun
tional. It is a fundamental prin
iple in ve
toroptimization that optimal (minimal) elements of a subset of a partially orderedlinear spa
e 
an be 
hara
terized as optimal solutions of 
ertain s
alar optimizationproblems. For the problem (3.1), a wide family of s
alar problems is known,
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h fully des
ribe the set of all minimal elements Min(X∂ , f,Λ) under suitableassumptions (see, for instan
e, [9, 11, 14, 15℄ and the referen
es therein). However,our prime interest is to des
ribe the set Effτ (X∂ ; f ; Λ) of (Λ, τ)-e�
ient solutionsto the ve
tor problem (3.2) (see (3.5)), whi
h involves some topologi
al propertiesof the obje
tive mapping f and the spa
e Y . In order to do it, we will 
onsiderthe problem of s
alar representation of ve
tor optimization problem (3.2) witha (Λ, σ × τ)-lower semi
ontinuous mapping f : X∂ → Y , using the �simplest�method of the �weighted sum�.To begin with, we introdu
e some additional suppositions. As was mentionedabove, the obje
tive spa
e Y is dual to some separable Bana
h spa
e V (that is
Y = V ∗). Suppose that the spa
e V is partially ordered with a nontrivial pointedordering 
one K ⊂ V for whi
h Λ is the dual 
one, that is,

Λ = K∗ :=
{
y ∈ Y : 〈y, λ〉Y ;V ≥ 0 for all λ ∈ K

}
. (4.1)De�nition 12. We say that λ ∈ V is a quasi-interior point of the 
one K if

λ ∈ K and 〈b, λ〉Y ;V > 0 for all b ∈ Λ \ {0}.We denote byK♯ the set of all quasi-interior points ofK. Note that, in general,we have the in
lusion cor (K) ⊆ K♯, where corK is an algebrai
al interior of the
one K (for more details we refer to [11℄).In what follows, we asso
iate with the ve
tor optimization problem (3.2) thefollowing s
alar minimization problem
fλ(x) = 〈f(x), λ〉Y ;V → inf subje
t to x ∈ X∂ ⊂ X (4.2)where λ is an element of the 
one K.The main property of this problem 
an be 
hara
terized as follows.Theorem 2. Let X and Y = V ∗ be two real Bana
h spa
es, let Y be endowedwith the weak-∗ topology τ , and let Y be partially ordered with the 
one Λ = K∗,where K is an ordering 
one in V with a non-empty quasi-interior K♯. Let also

X∂ be a non-empty subset of X, and let f : X∂ → Y be a given mapping. Assumethat there are elements x0 ∈ X∂ and λ ∈ K♯ su
h that x0 ∈ Argmin
x∈X∂

〈f(x), λ〉Y ;V .Then x0 is a (Λ, τ)-e�
ient solution to the problem (3.2).Proof. By the initial assumptions, we have
fλ(x0) − fλ(x) =

〈
f(x0) − f(x), λ

〉
Y ;V

≤ 0, ∀x ∈ X∂ . (4.3)Let z be any element of the image set clτ f(X∂). Then there exists a sequen
e
{xk}∞k=1 ⊂ X∂ su
h that f(xk)

τ
⇀ z in Y as k → ∞. Hen
e, in view of (4.3), weget 〈

f(x0) − f(xk), λ
〉
Y ;V

≤ 0, ∀ k ∈ N. (4.4)Passing to the limit in (4.4) as k → ∞, we obtain
〈
f(x0) − z, λ

〉
Y ;V

≤ 0, ∀ z ∈ clτ f(X∂). (4.5)



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 77Let us assume that x0 6∈ Effτ (X∂ ; f ; Λ). Then there exists an element h ∈
clτ f(X∂) su
h that h <Λ f(x0). So, f(x0)−h ∈ Λ\{0Y }. Hen
e, by De�nition 12,

〈
f(x0) − h, λ

〉
Y ;V

> 0,and we 
ome to a 
ontradi
tion with (4.5). So, x0 ∈ Effτ (X∂ ; f ; Λ) and this
on
ludes the proof.As an evident 
onsequen
e of this result, we have the following 
on
lusion.Corollary 1. Under suppositions of Theorem 2, we have
⋃

λ∈K♯

Argmin
x∈X∂

〈f(x), λ〉Y ;V ⊆ Effτ (X∂ ; f ; Λ). (4.6)Remark 7. Note that Theorem 2 generally fails when λ ∈ K \ K♯. Indeed, let
V = Y = R2, X∂ = [1, 2], and let Λ = R2

+ be the ordering 
one of positiveelements (then K = Λ). We de�ne the obje
tive mapping f : X∂ → Y as follows:
f(x) =

[x
1

] if x ∈ (1, 2], and f(x) =

[
1

2

] at the point x = 1(see Fig. 7). Straightforward 
al
ulations show that

Fig. 7. The example of the problem for whi
h Effτ (X∂ ; f ; Λ) = ∅

lim infΛ,τ
x→ 1 f(x) =

[
1

1

]
,and hen
e Effτ (X∂ ; f ; Λ) = ∅. However, if we take λ =

[1
0

]
∈ K \K♯, then

〈f(x), λ〉V ∗;V = xand hen
e
Argmin
x∈[1,2]

〈f(x), λ〉V ∗;V = {1} 6∈ Effτ (X∂ ; f ; Λ).Before pro
eeding further, we note that the obje
tive mapping in Theorem 2does not possess the (Λ, σ × τ)-lower semi
ontinuity property, in general. So thequestion is about the solvability of the asso
iated s
alar minimization problems(4.2) with λ ∈ K♯. Following the dire
t method in the Cal
ulus of Variations, the
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onstrained minimization problem (4.2) has a non-empty set of solutions, provided
X∂ is a σ-
ompa
t subset and

fλ(·) = 〈f(·), λ〉Y ;V : X∂ → Ris a proper lower σ-semi
ontinuous fun
tion. However, the 
hara
teristi
 featureof ve
tor optimization problems (3.2) is the fa
t that with any (Λ, σ × τ)-lowersemi
ontinuous mapping f : X∂ → Y , whi
h is neither lower semi
ontinuousnor quasi-lower semi
ontinuous on X∂ , there 
an be always asso
iated a s
alarminimization problem (4.2) for whi
h the 
orresponding 
ost fun
tional fλ : X∂ →
R is not lower σ-semi
ontinuous on X∂ . Indeed, let τ be the weak-∗ topology on
Y , and let x0 be a point of X∂ where the quasi-lower semi
ontinuity of f is failed.Then there exists at least one element a∗ ∈ clτ (f(X∂)) su
h that

a∗ ∈ lim infΛ,τ

x
σ
→x0

f(x), f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f(x), and a∗ 6= f(x0). (4.7)Let {xk}∞k=1 ⊂ X∂ be a sequen
e su
h that xk
σ→ x0 in X and f(xk)

τ→ a∗ in Y .Sin
e a∗ ≯Λ f(x0), it follows that a∗ − f(x0) 6∈ Λ and hen
e there exists a ve
tor
λ∗ ∈ K su
h that 〈

a∗ − f(x0), λ∗
〉
Y ;V

< 0.As a result, we have
lim inf
k→∞

fλ∗(xk) = lim
k→∞

〈f(xk), λ
∗〉Y ;V

= 〈a∗, λ∗〉Y ;V <
〈
f(x0), λ

〉
Y ;V

= fλ∗(x0).Thus, the lower σ-semi
ontinuity property for fλ∗ fails at x0. Moreover, as thefollowing example shows, for (Λ, σ× τ)-lower semi
ontinuous mappings f : X∂ →
Y a situation is possible when none of the s
alar fun
tions fλ(x) = 〈f(x), λ〉Y ;Vis lower σ-semi
ontinuous for any λ ∈ K♯.Example 6. Let X∂ = [1, 2] ⊂ R, and let Λ = R2

+ be the ordering 
one of positiveelements in Y = R2. It is 
lear that in this 
ase V = Y and K = Λ. Let us
onsider the mapping f : X∂ → R2 de�ned by (see Fig. 8)
f(x) =





[x
1

]
, if x ∈ [1, 2] \ {1 + 1/k, k ∈ N} ,

[
0

1+k

]
, if x = 1 + 1/k, k ∈ N.

I

x

1

2

X

z1

z2

1 2 1 2Fig. 8. The ve
tor-valued mapping in Example 6
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al
ulations show that
lim infΛ,τ

x
σ
→ 1

f(x) =

{[
1

1

]}
,

lim infΛ,τ

x
σ
→ (1+1/k)

f(x) =

{[
0

1 + k

]
,

[
1 + 1/k

1

]}
.Sin
e

f(1) ∈ lim infΛ,τ

x
σ
→ 1

f(x) and f(1 + 1/k) ∈ lim infΛ,τ

x
σ
→ (1+1/k)

f(x),it means that the mapping f : X∂ → R2 is (Λ, σ × τ)-lower semi
ontinuous atthese points and in fa
t on the whole domain X∂ . Let λ =
[

λ1

λ2

] be any ve
torwith non-negative 
omponents, i.e. λ ∈ K. Then the s
alar fun
tion fλ, asso
iatedwith the ve
tor-valued mapping f by the s
heme of the �weighted sum�, 
an berepresented in the form
fλ(x) := 〈f(x), λ〉Y ;V =

{
λ1x+ λ2, if x 6= 1 + 1/k,
λ2(1 + k), if x = 1 + 1/k,

∀ k ∈ N, ∀x ∈ X∂ .(4.8)To be sure that the lower σ-semi
ontinuity property for this fun
tion at the points
xk = 1 + 1/k is valid, we have to 
hoose the parameters λ1 and λ2 so that theinequality

λ2(1 + k) ≤ λ1(1 + 1/k) + λ2 (4.9)holds true for every k ∈ N.However, taking into a

ount the non-negativeness of λi and passing in (4.9)to the limit as k → ∞, we obtain λ2 = 0. As a result, we have
fλ(x) =

{
λ1x, if x 6= 1 + 1/k,
0, if x = 1 + 1/k,

∀ k ∈ N, ∀x ∈ X∂ . (4.10)Nevertheless, as follows from (4.10), the inequality
fλ(1) ≤ lim inf

k→∞
fλ(xk)does not hold for any λ1 > 0 with the ex
eption of λ1 = 0. Thus, there is a uniques
alar fun
tion in the 
olle
tion (4.8) satisfying the lower semi
ontinuity propertyin the domain X∂ = [1, 2]. This fun
tion is fλ(x) ≡ 0.This example motivates the introdu
tion of the following notion.De�nition 13. Let f : X∂ → Y be a given mapping. The 
one

Kσ
f := {λ ∈ K : fλ is lower σ-semi
ontinuous on X∂} (4.11)is 
alled the 
one of σ-semi
ontinuity for the mapping f .As a result, Theorem 2 
an be sharped as follows.
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h spa
e, let V be a separable Bana
h spa
e,and let Y = V ∗ be endowed with the weak-∗ topology τ and partially ordered with apointed Daniell 
one Λ = K∗, where K is a weakly 
losed ordering 
one in V . Letalso X∂ be a non-empty bounded weakly 
losed subset of X, and let f : X∂ → Ybe a (Λ, σ× τ)-lower semi
ontinuous mapping, where σ is the weak topology of X.Assume that Kσ
f \ 0V 6= ∅. Then

Argmin
x∈X∂

〈f(x), λ〉Y ;V ∩ Effτ (X∂ ; f ; Λ) 6= ∅ ∀λ ∈ Kσ
f \ 0V . (4.12)Proof. As follows from Theorem 1, under the above assumptions, we have

Effτ (X∂ ; f ; Λ) 6= ∅.Let λ be any element of Kσ
f \ 0V . Then, by the dire
t method in the Cal
ulus ofVariations, we obtain
Argmin

x∈X∂

〈f(x), λ〉Y ;V 6= ∅.If λ ∈ K♯ then relation (4.12) is obvious by Theorem 2. So, we suppose that
λ ∈ Kσ

f \
(
K♯ ∪ 0V

). Assume that
Argmin

x∈X∂

〈f(x), λ〉Y ;V * Effτ (X∂ ; f ; Λ).Then, there exists an element x∗ ∈ X∂ su
h that
x∗ ∈ Argmin

x∈X∂

〈f(x), λ〉Y ;V , (4.13)
x∗ 6∈ Effτ (X∂ ; f ; Λ). (4.14)Hen
e, by (4.14), there exists an element

y∗ ∈ MinΛ (clτf(X∂)) ⊆ clτf(X∂) su
h that y∗ <Λ f(x∗).However, in view of (4.13) and (4.1), this leads us to the equality
fλ(x∗) = 〈f(x∗), λ〉Y ;V = 〈y∗, λ〉Y ;V . (4.15)Let {xk}∞k=1 be a sequen
e in X∂ su
h that

f(xk)
τ→ y∗ as k → ∞. (4.16)Sin
e the set X∂ is sequentially weakly 
ompa
t, we may suppose that there exists

x0 ∈ X∂ su
h that xk
σ−→ x0 in X. On the other hand, y∗ ∈ MinΛ (clτf(X∂)).Hen
e, y∗ ∈ InfΛ,τ

x∈X∂
f(x) by De�nition 6. As a result, we have x0 ∈ Effτ (X∂ ; f ; Λ).Taking into a

ount the lower σ-semi
ontinuity of the fun
tional fλ : X∂ → R,we get

〈f(x0), λ〉Y ;V ≤ lim inf
k→∞

〈f(xk), λ〉Y ;V

by (4.16)
= 〈y∗, λ〉Y ;V .Then, 
ombining this with (4.15), we obtain

〈f(x0), λ〉Y ;V ≤ 〈f(x∗), λ〉Y ;V ,
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x0 ∈ Argmin

x∈X∂

〈f(x), λ〉Y ;V .Thus, we have shown that there exists at least one element x0 ∈ X∂ whi
h is ajoint point of the sets Argmin
x∈X∂

〈f(x), λ〉Y ;V and Effτ (X∂ ; f ; Λ), respe
tively. This
ompletes the proof.As an evident 
onsequen
e of this theorem, we have the following 
on
lusion:Corollary 2. Assume that in addition to the 
onditions of Theorem 3 there existsan element λ ∈ Kσ
f \ 0V su
h that the in�mum in the s
alar problemMinimize fλ(x) = 〈f(x), λ〉Y ;V subje
t to x ∈ X∂ (4.17)is attained at a unique point x∗ ∈ X∂. Then x∗ ∈ Effτ (X∂ ; f ; Λ).Note that, we do not give the 
onditions whi
h would guarantee the ful�lmentof the relation Kσ

f \ 0V 6= ∅. However, as a hypothesis, we 
an make the following
onje
ture:If the image set f(X∂) is bounded in 〈Y, ‖ · ‖〉 and K has a non-empty quasi-interior (K♯ 6= ∅), then under 
onditions of Theorem 3, the 
one Kσ
f 
ontains atleast one nontrivial element.To motivate this hypothesis, we note that if a uniformly bounded mapping f :

X∂ → Y is quasi-lower semi
ontinuous on X∂ then f is lower semi
ontinuous (see[2℄). In this 
ase the fun
tions fλ(x) = 〈f(x), λ〉Y ;V are lower σ-semi
ontinuouson X∂ for every λ ∈ K. Hen
e Kσ
f \ 0V 6= ∅. Let x0 be a point of X∂ wherethe quasi-lower semi
ontinuity of f fails. Then there exists at least one element

a∗ ∈ clτ (f(X∂)) with properties (4.7). Let λ∗ be an element of K su
h that
〈
f(x0), λ∗

〉
Y ;V

≤ 〈a∗, λ∗〉Y ;V ∀ a∗ ∈ lim infΛ,τ

x
σ
→x0

f(x). (4.18)The existen
e of λ∗ immediately follows from the fa
t that
f(x0) ≯Λ a

∗ for all a∗ ∈ lim infΛ,τ

x
σ
→x0

f(x).Let {xk}∞k=1 ⊂ X∂ be a sequen
e su
h that xk
σ→ x0 in X. Sin
e ea
h of elements

a∗ belongs to the set
Lσ×τ (f, x0) :=

⋃

{xk}
∞
k=1∈Mσ(x0)

Lτ{f̂(xk)}of τ -
luster points of the sequen
es {f̂(xk)
}∞

k=1
, it follows from (4.18) that

〈
f(x0), λ∗

〉
Y ;V

≤ lim inf
k→∞

〈f(xk), λ
∗〉Y ;V .Thus, the fun
tion fλ∗ is sequentially lower σ-semi
ontinuous at the point x0.
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tor optimization problems and theirgeneralized solutionsLet λ be an arbitrary element of the 
one K. Denote by
Sol(X∂ ; fλ) := Argmin

x∈X∂

fλ(x)the solution set to the s
alar problem (4.17). We re
all that the problem (4.17)is said to be well-posed in the generalized sense when every minimizing sequen
e
{xk}∞k=1 ⊂ X∂ (i.e. su
h that fλ(xk) → infx∈X∂

fλ(x)) has a subsequen
e σ-
onverging to some element of Sol(X∂ ; fλ). We re
all also a generalization ofthe above mentioned notion. The problem (4.17) is said to be well-set whenevery minimizing sequen
e 
ontained in X∂ \ Sol(X∂ ; fλ) has a σ-
luster pointin Sol(X∂ ; fλ). However, as follows from the arguments of this se
tion (see alsoExample 7 given below), the problem (4.17) 
an be neither well-posed nor well-set, in general. The main reason is the (Λ, σ× τ)-lower semi
ontinuity property ofthe obje
tive mapping f whi
h is the weakened property of lower semi
ontinuityfor ve
tor-valued mappings in Bana
h spa
es.Example 7. Let X∂ = {x ∈ X : ‖x‖ ≤ 1} be a unit 
losed ball in a re�exiveBana
h spa
e X. Let Y = R2 be the obje
tive spa
e partially ordered with the
one Λ = R2
+ of positive elements in R2. We suppose that X and Y are endowedwith the strong topologies σ and τ , respe
tively. Let the obje
tive mapping f :

Xad → R2 be de�ned as
f(x) =

[
2 − ‖x‖
1 + ‖x‖

] if x ∈ Xad \ {0X ∪ S} ,

f(x) =

[
2

2

] if x ∈ S, f(0X) =

[
1

1

]
,where S = {x ∈ X : ‖x‖ = 1} is the unit sphere in X. Sin
e

MinΛ (clτf(X∂)) = MinΛ (f(X∂)) =

{[
1

1

]}
,it follows that

lim infΛ,τ

x
σ
→ 0X

f(x) =

{[
1

1

]}
,and hen
e f is (Λ, σ × τ)-lower semi
ontinuous on X∂ . Then, by Theorem 1, the
orresponding ve
tor optimization problem 〈X∂ , f,Λ, τ〉 is solvable and, moreover,

xeff = 0X is its unique (Λ, τ)-e�
ient solution.Let us 
onsider the following s
alar problemMinimize fλ(x) = (f(x), λ)
R2 subje
t to x ∈ X∂ , (5.1)asso
iated with the ve
tor problem 〈X∂ , f,Λ, τ〉, where

λ =

[
1

0

]
, fλ(x) := (f(x), λ)

R2 =





2 − ‖x‖, if ‖x‖ < 1 and x 6= 0X ,
2, if x ∈ S,
1, if x = 0X
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t veri�
ation we 
an show that Sol(X∂ ; fλ) = {0X}. However,this s
alar problem is neither well-posed nor well-set with respe
t to the strongtopology of X, be
ause all minimizing sequen
es for (5.1) 
ontaining in X∂ \
Sol(X∂ ; fλ) have σ-
luster points on the unit sphere S = {x ∈ X : ‖x‖ = 1}.In many appli
ations it has a sense to weaken the requirement on e�
ientsolutions to the ve
tor optimization problem 〈X∂ , f,Λ, τ〉. In parti
ular, we maylet the obje
tive mapping to attain its e�
ient in�mum on the set X∂ with someerror. On the other hand, the set of (Λ, τ)-e�
ient solutions to su
h problem 
anpossibly be empty, i.e., the e�
ient in�mum of the obje
tive mapping is oftenunattainable on the given set X∂ . Nevertheless, the absen
e of its in�mum doesnot mean that the ve
tor optimization problem makes no sense, sin
e its e�
ientin�mum exists and hen
e 
an be approa
hed with some a

ura
y.De�nition 14. We say that a sequen
e {xk}∞k=1 ⊂ X∂ is minimizing to the ve
toroptimization problem 〈X∂ , f,Λ, τ〉, if f(xk)

τ→ ξ in Y , where ξ is an element of
InfΛ,τ

x∈X∂
f(x).De�nition 15. We say that the ve
tor optimization problem 〈X∂ , f,Λ, τ〉 is well-posed in the Tikhonov sense with respe
t to the σ-topology of X, if it is solvableand every minimizing sequen
e {xk}∞k=1 ⊂ X∂ has a subsequen
e σ-
onverging tosome element of Effτ (X∂ ; f ; Λ). In this 
ase a minimizing sequen
e is 
alled aTikhonov minimizing sequen
e. We also say that the ve
tor optimization problem

〈X∂ , f,Λ, τ〉 is well-set in the Tikhonov sense with respe
t to the σ-topology of X,if it is solvable and every minimizing sequen
e 
ontained in X∂ \ Effτ (X∂ ; f ; Λ)has a σ-
luster point in Effτ (X∂ ; f ; Λ).Note that having a Tikhonov minimizing sequen
e, we 
an guarantee boththe proximity of the 
orresponding values of the obje
tive mapping to its e�
ientin�mum and the proximity of the approximation itself to one of the (Λ, τ)-e�
ient solutions of the problem. Nevertheless it should be stressed that evenin simple applied problems the 
onstru
tion of Tikhonov minimizing sequen
esand 
orresponding Tikhonov approximate solutions usually turns out to be a very
ompli
ated and sometimes unsolvable problem. In view of this, it is reasonableto weaken the requirements on approximate solutions to the ve
tor optimizationproblem 〈X∂ , f,Λ, τ〉.De�nition 16. We say that an element x∗ ∈ X∂ is the (σ, τ)-generalized solutionto ve
tor optimization problem (3.2), if there exist a sequen
e {xk}∞k=1 ⊂ X∂ andan element ξ ∈ InfΛ,τ
x∈X∂

f(x) su
h that xk
σ
⇀ x∗ in X and f(xk)

τ→ ξ in Y .Thus, a ve
tor optimization problem may have an approximate solution evenin the absen
e of its solvability. It is 
lear that any Tikhonov approximate solutionto the problem 〈X∂ , f,Λ, τ〉 is also a (σ, τ)-generalized solution. However, even if a
(Λ, τ)-e�
ient solution is available (xeff ∈ Effτ (X∂ ; f ; Λ)), we 
annot guaranteethe proximity of an (σ, τ)-generalized solution x∗ to Effτ (X∂ ; f ; Λ) in the σ-topology of X.We denote by GenEffσ,τ (X∂ ; f ; Λ) the set of all (σ, τ)-generalized solutionsto the problem 〈X∂ , f,Λ, τ〉. It is 
lear that

Effτ (X∂ ; f ; Λ) ⊆ GenEffσ,τ (X∂ ; f ; Λ).
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onsequen
e of Theorem 1, we have the following obviousresult:Proposition 4. Under suppositions of Theorem 1, the ve
tor optimization prob-lem 〈X∂ , f,Λ, τ〉 is well-set in the Tikhonov sense with respe
t to the topology of
X, and in addition GenEffσ,τ (X∂ ; f ; Λ) = Effτ (X∂ ; f ; Λ).However, as the next example indi
ates, the inverse in
lusion

GenEffσ,τ (X∂ ; f ; Λ) ⊂ Effτ (X∂ ; f ; Λ)does not generally hold.Example 8. Let X∂ = {x ∈ X : ‖x‖ ≤ 1} be a unit ball in a Bana
h spa
e X, let
Y = R2 be partially ordered with the 
one Λ = R2

+ of positive elements in R2.Let the mapping f : X∂ → R2 be de�ned by
f(x) =

[
1 + ‖x‖
1 + ‖x‖

] if x ∈ X∂ \ {0X ∪ S} ,

f(x) =

[
1

2

] if x ∈ S, f(0X) =

[
2

1

]
,where S = {x ∈ X : ‖x‖ = 1} is the unite sphere in X. We endow the spa
es X

Fig. 9. The set f(X∂) to Example 8and Y with the weak (σ) and the strong (τ) topologies, respe
tively. Sin
e
MinΛ (f(X∂)) =

{[
1

2

]
,

[
2

1

]} and MinΛ (clτf(X∂)) =

{[
1

1

]}
,it follows that Min(X∂ , f,Λ) = {0X} ∪ S whereas Effτ (X∂ ; f ; Λ) = ∅. However,the set of (σ, τ)-generalized solutions to the problem 〈X∂ , f,Λ, τ〉 is non-empty.Indeed, let us �x a sequen
e {xk}∞k=1 ⊂ X∂ su
h that

xk ⇀ 0X in X and f(xk) →
{[

1

1

]}
.Then, following De�nition 16, we have

0X ∈ GenEffσ,τ (X∂ ; f ; Λ)
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t,
GenEffσ,τ (X∂ ; f ; Λ) = {0X} .Having taken λ∗ =

[1
0

], we 
onsider the following s
alar problem asso
iatedwith the ve
tor problem 〈X∂ , f,Λ, τ〉:
fλ(x) := (f(x), λ)

R2 =





1 + ‖x‖, if ‖x‖ < 1 and x 6= 0X ,
1, if ‖x‖ = 1,
2, if x = 0X

(5.2)Straightforward 
al
ulations show that
Argmin

x∈X∂

fλ(x) = {x ∈ X∂ : ‖x‖ = 1} .As a result, we have
GenEffσ,τ (X∂ ; f ; Λ) ∩ Argmin

x∈X∂

fλ(x) = ∅.Thus, any solution of the s
alar problem (5.2) is neither a (Λ, τ)-e�
ient solutionnor a generalized one to the ve
tor problem 〈X∂ , f,Λ, τ〉. Thus, in view of De�ni-tion 15, 〈X∂ , f,Λ, τ〉 
an be 
hara
terized as the ill-posed ve
tor optimizationproblem.To obtain the su�
ient 
onditions whi
h would guarantee that the set of
(σ, τ)-generalized solutions to the problem 〈Ξ, I,Λ, τ〉 is non-empty, we use thes
alarization of this problem in the form (4.2).Let sc−σ fλ : X∂ → R denote the lower σ-semi
ontinuous envelope of thefun
tional fλ(x) = 〈f(x), λ〉Y ;V with some λ ∈ K, that is, sc−σ fλ is the greatestlower σ-semi
ontinuous fun
tional majorized by fλ on X∂ . Then, following thedire
t method in the Cal
ulus of Variations, we get:Proposition 5. Let X∂ be a sequentially 
losed subset of a linear topologi
alspa
e (X,σ). Assume that for a �xed λ ∈ K the fun
tional sc−σ fλ : X∂ → Ris 
ountably σ-
oer
ive, i.e. the σ-
losure of the set {x ∈ X∂ : sc−σ fλ(x) ≤ t}is 
ountably σ-
ompa
t for every t ∈ R. Then every minimizing sequen
e for
infx∈X∂

sc−σ fλ(x) has a σ-
luster point whi
h is a minimum point of sc−σ fλ on X∂ ,i.e., Sol(X∂ ; sc−σ fλ) 6= ∅.Remark 8. It is 
lear that this theorem remains valid if instead of the 
ountable
σ-
oer
iveness of sc−σ fλ on X∂ we assume the sequential σ-
ompa
tness of the set
X∂ .Now we are able to prove the main result of this paper.Theorem 4. Let X be a re�exive Bana
h spa
e, σ be the weak topology on X,
V be a separable Bana
h spa
e, and the Bana
h spa
e Y = V ∗ be endowed withthe weak-∗ topology τ and partially ordered with a pointed 
one Λ = K∗, where Kis a 
onvex pointed 
one in V with non-empty algebrai
 interior cor (K). Let also
X∂ be a non-empty sequential σ-
ompa
t subset of X, and let f : X∂ → Y be a
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essary (Λ, σ × τ)-lower semi
ontinuous on X∂). Then thefollowing in
lusion is valid:
⋃

λ∈K♯

Argmin
x∈X∂

sc−σ fλ(x) ⊆ GenEffσ,τ (X∂ ; f ; Λ). (5.3)Proof. To begin with, we note that the 
onvexity of the pointed 
one K and
ondition cor (K) 6= ∅ imply the in
lusion cor (K) ⊂ K♯ (see [11℄). Hen
e thequasi interior K♯ of K is non-empty. Let λ be any element of K♯. Then, byProposition 5, there exists at least one element x∗ ∈ X∂ su
h that
x∗ ∈ Argmin

x∈X∂

sc−σ fλ(x). (5.4)Sin
e sc−σ fλ(x) is the lower σ-semi
ontinuous envelope of the
fλ(x) = 〈f(x), λ〉Y ;V ,it follows that there exists a sequen
e {xk}∞k=1 ⊂ X∂ su
h that xk

σ→ x∗ and
lim

k→∞
〈f(xk), λ〉Y ;V = sc−σ fλ(x∗) ≤by 
ondition (5.4)

≤ sc−σ fλ(x) ≤ 〈f(x), λ〉Y ;V (5.5)
∀x ∈ X∂ . Sin
eK♯∪0V is a nontrivial 
onvex 
one in V with non-empty algebrai
alinterior, it follows that it is a reprodu
ing 
one in V , that is,

[
K♯ ∪ 0V

]
−
[
K♯ ∪ 0V

]
= V(see [11℄). Then, following Peressini [17℄ and Borwein [6℄, we have that in the dualspa
e Y = V ∗ the ordering 
one Λ = K∗ is normal with respe
t to the normtopology of Y , that is,

y <Λ z =⇒ ‖y‖ < ‖z‖. (5.6)Now, turning ba
k to the formula (5.5), we get: there exist an integer k̂ ∈ N andan element ŷ ∈ Y su
h that
〈f(xk), λ〉Y ;V < 〈ŷ, λ〉Y ;V ∀ k > k̂.Sin
e λ ∈ K♯, this implies f(xk) <Λ ŷ for all k > k̂. Using the normality property(5.6) of the 
one Λ for the norm topology of Y , we 
ome to the 
on
lusion: thereexists a 
onstant c > 0 su
h that
‖f(xk)‖Y ≤ C for all k > k̂.Hen
e, without loss of generality, we may suppose that the sequen
e {f(xk)}∞k=1is bounded in Y . So, by Bana
h-Alaoglu Theorem, there exist an element η ∈ Yand a subsequen
e of {f(xk)}∞k=1 (still denoted by su�x k) su
h that f(xk)

τ→ ηin Y as k → ∞.
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x∗ 6∈ GenEffσ,τ (X∂ ; f ; Λ). (5.7)Then, as follows from De�nition 16, η 6∈ InfΛ,τ

x∈X∂
f(x). Hen
e, there 
an be foundan element ξ ∈ InfΛ,τ

x∈X∂
f(x) su
h that ξ <Λ η. Therefore, η − ξ ∈ Λ \ {0Y }, andusing the fa
t that λ ∈ K♯, we just 
ome to the inequality

〈η, λ〉Y ;V > 〈ξ, λ〉Y ;Vwhi
h is equivalent to
lim

k→∞
〈f(xk), λ〉Y ;V > 〈ξ, λ〉Y ;V . (5.8)On the other hand, for the element ξ ∈ InfΛ,τ

x∈X∂
f(x) there exists a sequen
e

{vk}∞k=1 ⊂ X∂ su
h that f(vk)
τ→ ξ in Y . Sin
e the set X∂ is sequentially σ-
ompa
t, we may suppose that vk

σ→ v∗ ∈ X∂ . Then, by inequality (5.5), wededu
e
lim

k→∞
〈f(xk), λ〉Y ;V ≤ 〈f(vi), λ〉Y ;V , ∀ i ∈ N. (5.9)Passing to the limit in (5.9) as i→ ∞, we get

lim
k→∞

〈f(xk), λ〉Y ;V ≤ 〈ξ, λ〉Y ;V .However, this 
ontradi
ts (5.8) and hen
e (5.7). Thus, x∗ is the (σ, τ)-generalizedsolution to ve
tor optimization problem 〈X∂ , f,Λ, τ〉.Referen
es1. Âóëèõ Á. Ç. Ââåäåíèå â �óíêöèîíàëüíûé àíàëèç / Á. Ç. Âóëèõ. � Ì. : Íàóêà,1967. � 415 ñ.2. Äîâæåíêî À. Â. Êâàçi-íåïåðåðâíà çíèçó ðåãóëÿðèçàöiÿ âiäîáðàæåíü â áàíàõîâèõïðîñòîðàõ // À. Â. Äîâæåíêî, Ï. I. Êîãóò // Âiñíèê ÄÍÓ, 2009. � Ò. 17, � 6/1. �Ñ. 91�109.3. Ait Mansour M., Metrane A., Th�era M. Lower Semi
ontinuous Regularization forVe
tor-Valued Mappings, J. Global Optimization, 2006. � Vol. 35, N. 2. � P. 283�309.4. Akian M., Singer I. Topologies on latti
e ordered groups, separations from 
loseddownwards and 
onjugations of type Lau // Optimization,2003. � Vol. 52, � 4. �P. 629�673.5. Aubin J. P., Frankowska H. Set-Valued Analysis. � Cambridge : Birkh�auser, 1990.6. Borwein J.M. Continuity and di�erentiability properties of 
onvex operators //Optimization, 1982. � Vol. 44, N 3. � P. 420�444.7. Borwein J. M., Penot J. P., Th�era M. Conjugate Convex Operators // Math. Anal.and Appl., 1984. � Vol. 102. � P. 399�414.8. Combari C., Laghdir M., Thibault L. Sous-di��erentiel de fon
tions 
onvexes
ompos�ees // Ann. S
i. Math. Qu�ebe
, 1994. � Vol. 18, N 2. � P. 119�148.9. Ehrgott M. Multi
riteria Optimization. � Berlin : Springer, 2005.10. Finet C., Quarta L., Troestler C. Ve
tor-valued variational prin
iples // Institute deMath�ematique et d'Informatique, Universit�e de Mons-Hainaut, 2001. � (Preprint ♯4,January 19).



88 P. I. KOGUT, R. MANZO, I. V. NECHAY11. Jahn J. Ve
tor Optimization. Theory, Appli
ations, and Extensions. � Berlin :Springer-Verlag, 2004.12. Kogut P. I., Manzo R., Ne
hay I. V. On existen
e of e�
ient solutions to ve
toroptimization problems in Bana
h spa
es // Note de Matemati
a, 2009 (to appear).13. Lu
 D. T. Theory of Ve
tor Optimization. � N. Y. : Springer-Verlag, 1989.14. Lu
 D. T. S
alarization of ve
tor optimization problems// Journal of Optim. Theoryand Appl. (JOTA), 2005. � Vol. 55, N 1. � P. 85�102.15. Miglierina E., Molho E. S
alarization and its stability in ve
tor optimization//Journal of Optim. Theory and Appl. (JOTA), 2002. � Vol. 111, N 1. � P. 657�670.16. Penot J. P., Th�era M. Semi-
ontinuous mappings in general topology// Ar
h. Math.,1982. � Vol. 38. � P. 158�166.17. Peressini A. L. Ordered Topologi
al Ve
tor Spa
es. � N. Y. : Harpet and Row, 1967.18. Sawaragi Y., Nakayama H., Tanino T. Theory of Multiobje
tive Optimization. �Orlando : A
ademi
 Press, 1985.19. Th�era M. �Etudes des fon
tions 
onvexes ve
torielles semi-
ontinues // Th�ese de 3e
y
le., Universit�e de Pau, 1978.20. Yu P. L. Cone 
onvexity, 
one extreme points and non-dominated solutions inde
ision problems with multiobje
tivity // Journal of Optim. Theorey and Appl.(JOTA), 1974. � Vol. 14. � P. 319�377. Íàäiéøëà äî ðåäàêöi¨ 01.08.2009


