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HOMOGENIZED MODELS WITH MEMORY EFFECT FOR
HETEROGENEOUS PERIODIC MEDIA

Gennadiy V. Sandrakov∗, Vladimir V. Semenov†

Abstract. The homogenization of initial boundary value problems for heat conduction
equations with asymptotically degenerate rapidly oscillating periodic coefficients are con-
sidered. Such problems model thermal processes in heterogeneous periodic media. Homo-
genized problems (whose solutions determine approximate asymptotics for solutions of
the original problems) are presented. Estimates for the accuracy of the asymptotics and
relevant convergence theorem are discussed. The homogenized problems have the form
of initial boundary value problems for integro-differential equations in convolutions. The
presence of convolutions in models for media is called the memory effect. Statements about
the solvability and regularity for the problems and the homogenized problems are proved.
These results are optimal even in the case of zero convolutions, when the homogenized
problems coincide with the classical heat conduction problems.

Key words: Heat conduction equations, approximate asymptotics, solvability result.

2010 Mathematics Subject Classification: 35B27, 65N15, 80M40.

Communicated by Prof. O. Kupenko

1. Introduction

The purpose of this article is to investigate models of thermal processes in a
composite material with a periodic structure, which occupies a bounded domain Ω
and is composed of two materials with very different properties. It is assumed
that the domain Ω is represented as a union of two domains Ωε

1 and Ωε
0 with a

periodic structure determined by a small positive parameter ε, which are separated
by a common boundary ∂Ωε

1 \ ∂Ω. The density and conductivity coefficients of
the material corresponding to Ωε

1 are constant, while the density coefficient of
another material is characterized by the positive bounded parameter µ and the
conductivity is equal to ε2. The latter equality is usually called the case of double
porosity in accordance with [2], where this case was first considered without a
proof of the relevant convergence theorem and an accuracy estimate.

The study of the models will be based on homogenization methods. Initially,
these methods were developed by I. Babuska, N. S. Bakhvalov, A. Bensoussan,
J.-L. Lions, and G. Papanicolau to simplify computer simulations for composite
material models (references can be found, for example, in [3, 5]). Accordance to
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the method the simulation of thermal processes in a composite with a periodic
structure defined by ε can be replaced by the simulation of a thermal process for
a homogeneous (homogenized) material with guaranteed accuracy for sufficiently
small ε. In a mathematical sense, this means that the solution of the heat conduc-
tion problem with complex periodic coefficients is guaranteed to be close to the
solution of the problem with constant coefficients. Appropriate theorems and
accuracy estimates were proved, for example, in [3,5] for sufficiently regular data.

It also turned out that it is much easier to prove that the solution of some
problem with complex periodic coefficients converges in an appropriate space to
the solution of a problem with constant coefficients. Such an approach does
not require usually additional data regularity but does not provide a guaranteed
approximation accuracy, further details can be found, for example, in [5, 19].
Problems with complex periodic coefficients have two natural (micro-macro) scales
and relevant fast and slow variables, which are reflected through rapidly oscillating
coefficients. Therefore, later it turned out that it is even easier to prove the two-
scale convergence of solutions of the problems to the solution of some homogenized
two-scale problems. This approach is used, for example, in [10, 13,14,17].

However, such two-scale problems depend on two fast and slow variables, and
the type of relevant equations for the problems is not clear. In addition, the
accuracy of the approximations in this case has not been proven. Numerical
methods for such two-scale (micro-macro) models are discussed, for example, in
[11,12,15]. Further details on the approaches and relevant references can be found
in [10, 12,14].

When studying composite materials composed of materials with very different
properties, additional small and large parameters may appear in models for such
composites. Models for periodic composites already have one small parameter
and new parameters can and should be correlated with the scale parameter ε,
this can affect the homogenized problem for such composites.

Homogenization for some non-stationary initial boundary value problems with
several parameters is considered in [21–24], where homogenized problems are ob-
tained and accuracy estimates are proved. Under certain geometric assumptions
on the composite structure, such homogenized problems are multiphase models,
which are described by coupled systems of equations with convolutions [22–24].
The presence of convolutions in models for media is called the memory effect [9].

To obtain such homogenized models with convolutions in [21–24], the Laplace
transform was used to transform non-stationary problems into stationary prob-
lems with a parameter, to which the asymptotic methods from [20] were applied.
After obtaining the terms of the asymptotics, accuracy estimates are proved by
energy methods. In the resulting problems, the fast and slow variables are sepa-
rated, and the homogenized models with convolutions depend only on slow vari-
ables. The same approach is also used, for example, in articles on related top-
ics [6, 7, 28, 29]. Homogenization of models in which there is initially a memory
effect and which is preserved for the homogenized models is considered in [4, 18],
where statements on the convergence and front structures are proved.
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The results of [21–24] were obtained under the assumption that the initial
data are regular enough and the initial conditions are homogeneous. Here we
consider the general case of irregular data without homogeneity conditions. The
precise statement of the problems is formulated in the next section, where the
homogenized problems, solvability assertions, and accuracy estimates are given.
As a consequence of this, convergence theorems for general data will be presented.
The proofs of the assertions are given in the concluding section. To investigate
the solvability of the homogenized problems with memory, we use the Laplace
transform method developed in [1] to study parabolic problems. In the case µ = 1
the results presented here are partially announced in [25,26].

2. Initial boundary value problems for thermal processes

For an integer n ≥ 2, assume that there are given a bounded domain Ω ⊂ Rn

with Lipschitz boundary ∂Ω and functions f ∈ L2(0,∞;H−1(Ω)) and w ∈ L2(Ω).
Here and below, function spaces are used, which are defined, for example, in [9].
We define a function u = u(t, x) as a solution to the following problem

mµ
ε u�t − div (λε∇u ) = rµε f in Ω× (0,∞),

u
��
t=0

= w in Ω, u = 0 on ∂Ω× (0,∞),
(2.1)

which depends on a finite parameter µ (in what follows, 0 < µ ≤ 1 for definiteness)
and the small positive parameter ε in the following way.

Let E1 be an open connected 1-periodic subset of Rn with locally Lipschitz
boundary, E0 = Rn \ F1 be a subset with locally Lipschitz boundary and

Eε
1 = εE1 = {εx : x ∈ E1}, Eε

0 = εE0 = {εx : x ∈ E0}.

Here and below, the 1-periodicity of a set (or a function) means that characteristic
function of the set (or the function itself) is 1-periodic with respect to each of the
independent variables xi, i = 1, . . . , n. Thus, Y ≡ (0, 1)n is a periodicity cell and
the sets E1 and E0 with the common boundary ∂E1 are completely determined
by the sets Y1 = E1 ∩ Y and Y0 = E0 ∩ Y with the boundary Γ = ∂E1 ∩ Y . The
sets Y1 and Y0 split the periodicity cell Y into two sets corresponding to different
materials of the composite under consideration that are separated by a common
boundary Γ. Examples illustrating such partitions are shown in Fig. 2.1.

The sets Eε
0 and Eε

1 for fixed ε define the periodic media Ωε
0 = Eε

0 ∩ Ω and
Ωε
1 = Eε

1 ∩Ω, which are bounded by the boundary ∂Ω of Ω, where problem (2.1)
is considered. Schematic drawings illustrating the media are shown in Fig. 2.2.

For the so-defined models of periodic media Ωε
0 and Ωε

1, corresponding to two
different materials in the domain Ω, the dependence of the real coefficients of
problem (2.1) on the parameter ε and µ is given by the following equalities

λε = ε2λ0 in Ωε
0 and λε = λ1 in Ωε

1,

mµ
ε = µm0, rµε = µ r0 in Ωε

0 and mµ
ε = m1, rµε = r1 in Ωε

1,
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where m0, r0, m1 and r1 are constants and the constant matrices λ0 and λ1 are
symmetric and elliptic. Here the ellipticity means the existence of constants α
and β such that the inequalities

0 < αE ≤ λ0 ≤ βE, 0 < αE ≤ λ1 ≤ βE

are true in matrix sense, where E is an identity matrix. Suppose also that

α ≤ m0 ≤ β, α ≤ m1 ≤ β, r0 ≤ β, r1 ≤ β.

Fig. 2.1. The model of splitting a cell for different materials

We assumed that the sets Y1 and Y0 have positive Lebesgue measures in Rn and
therefore the sets are not empty. Thus, for small ε, the equation of problem (2.1)
is degenerated on the set Ωε

0, which simulates a weakly conductive material.
This dependence on the parameters leads to the homogenized problem with

convolutions, the solutions of which approximate the solution of problem (2.1)
for small ε uniformly in µ according to [24]. For a precise formulation of such
homogenized initial-boundary value problems, additional definitions are needed.

Let the vector function N = N(y) be a 1-periodic solution of the following
Neumann problems on Y1 :

− divy(λ1∇yN) = 0 in Y1, − (λ1∇yN,Υ) = (λ1,Υ) on Γ,

where Υ denotes the outward normal to the boundary Γ = ∂Y1. Further, we
introduce the following notation for the matrix with constant components

Λ = |Y1|−1

ˆ

Y1

(λ1 + λ1∇yN(y)) dy,

where |Y1| denotes the Lebesgue measure of the set Y1. It is known [3,5] that the
solution N(y) and the matrix are well defined and Λ is symmetric and elliptic.
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Fig. 2.2. Composite material models

In addition, let the functions q = q(t, y) and g = g(t, y) be 1-periodic solu-
tions of the initial boundary value problems on Y0 :

µm0 q
�
t − divy(λ0∇y q) = 0 in Y0 × (0,∞),

q
��
t=0

= 1 in Y0, q = 0 on Y1× (0,∞),

µm0 g
�
t − divy(λ0∇y g) = 0 in Y0 × (0,∞),

g
��
t=0

= r0/m0 in Y0, g = 0 on Y1× (0,∞).

(2.2)

It is known [9] that suitable solutions to the problems exist and the functions

M(t) = |Y1|−1

ˆ

Y0

m0 q
�
t(t, y) dy, R(t) = |Y1|−1

ˆ

Y0

m0 g
�
t(t, y) dy (2.3)

are defined as elements of the space L1(0,∞) in accordance with [23, 24].
The homogenized convolution problem for the function v = v(t, x) is

mv�t − µM ∗ (v�t)− div(Λ∇v) = r f − µR ∗ f in Ω× (0,∞),
v
��
t=0

= w in Ω, v = 0 on ∂Ω× (0,∞),
(2.4)

where m = m1, r = r1, and ∗ denotes the convolution operator by t, for example,

M ∗ (v�t) =

ˆ t

0
M (t− τ) (v�τ (τ, x)) dτ.

For fixed ε and µ, a unique solution to problem (2.1) exists, for example,
according to [9]. For sufficiently smooth data and w = 0, a unique solution to
problem (2.4) exists in accordance with [24]. Moreover, the solutions of problems
(2.2) and (2.4) approximate the solution of problem (2.1) in the appropriate sense
for small ε uniformly in µ. More precisely, it was proved in [24], that the following
statement is fulfilled for the solutions to these problems.
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Theorem 2.1. Assume that f ∈ C∞
0 ((0, T )×Ω) and w = 0. Let u be a solution

to problem (2.1), v be a solution to problem (2.4), and T be fixed. Then

�u− v�2C0([0,T ];L2(Ωε
1))

+ µ
��u− v + qε∗ (v�t)− gε∗ f

��2
C0([0,T ];L2(Ωε

0))
≤ C ε,

where qε = q(t, x/ε) and gε = g(t, x/ε) are defined by using solutions to problems
(2.2) and the constant C does not depend on parameters ε and µ for 0 < ε ≤ ε0
with an appropriate positive ε0 and 0 < µ ≤ 1.

Remark 2.1. In this theorem, a part of the energy norm for problem (2.1) is
estimated. This part depends on µ, which is natural, since the density coefficient
in problem (2.1) depends on µ on the part of the domain Ω. Using the methods
of [20] and [24] to construct further terms in the asymptotics, one can estimate
the entire energy norm in such estimate by the small parameter ε. However, the
exact formulation of the relevant statement is much more cumbersome.

Thus, instead of solving problem (2.1), it is possible to solve problem (2.4)
with some guaranteed accuracy. Naturally, the numerical solution of problem (2.1)
for very small ε is much more complicated than the numerical solution of prob-
lem (2.4), since for the media shown in Fig. 2.2, a very fine mesh is required,
taking into account the geometry of very small components of the composite
material.

Moreover, according to the estimate, the solution to the original problem (2.1)
is strongly oscillating on small components, which should also be displayed in the
numerical solution. It is these oscillations that lead to the appearance of convolu-
tions in the homogenized problem, which is also commonly called the appearance
of memory in composite materials. Thus, the presence of weakly conductive com-
ponents in the domain Ω is modeled by the appearance of a memory in density
(coefficient at the time derivative) in homogenized composites.

Remark 2.2. The estimate of Theorem 2.1 is uniform with respect to the para-
meter µ. Related to this is the dependence of problems (2.2) and (2.4) on the
parameter. This dependence can be eliminated by representing the solutions of
problems (2.2) in the form q = q̃(t/µ, y) and g = g̃(t/µ, y). With this choice, the
dependence on µ in (2.4) will also be illuminated, since the coefficients M and R
are determined in terms of derivatives. Nevertheless, for small µ these functions
turn out to be insignificant in a certain sense. In this connection, the following
simple assertion will be proved in the next section.

Lemma 2.1. Let q and g be solutions to problem (2.2). Then

�q�2L2(0,∞;L2(Y)) + �g�2L2(0,∞;L2(Y)) ≤ Cµ,

where the constant C does not depend on µ for 0 < µ ≤ µ0 with an appropriate µ0.

For the small parameter µ, as a corollary of this assertion and results [24], the
following statement will be proved.



Homogenized models with memory effect for periodic media 7

Theorem 2.2. Assume that f ∈ C∞
0 ((0, T )×Ω) and w = 0. Let u be a solution to

problem (2.1), v0 be a solution to problem (2.4) with µ = 0, and T be fixed. Then

�u− v0�2C0([0,T ];L2(Ωε
1))

+ µ �u− v0�2C0([0,T ];L2(Ωε
0))

≤ C
�
ε+ µ2

�
,

where the constant C does not depend on parameters ε and µ for 0 < ε ≤ ε0 and
0 < µ ≤ µ0 with appropriate positive ε0 and µ0.

Thus, for low density at small µ and low conductivity for the material Ωε
0,

memory effects do not arise for composite materials within the accepted accuracy.
Nevertheless, for an arbitrary finite µ it is natural to prove the solvability and
regularity for problem (2.4) with common initial data, since it is necessary for the
numerical solution of this problem with guaranteed accuracy.

As a result, the following statement will be proved in the next section.

Theorem 2.3. Let f ∈L2(0,∞;H−1(Ω)) and w ∈L2(Ω). Then, the unique solu-
tion v ∈ L2(0,∞;H1

0 (Ω)) to problem (2.4) exists and there is a positive constant C
depending only on α, β, |Y0|, and |Y1|, such that

�v�L2(0,∞;H1
0 (Ω)) + �v�t�L2(0,∞;H−1(Ω)) ≤ C

�
�f�L2(0,∞;H−1(Ω)) + �w�L2(Ω)

�

and v ∈ C0([0, T ];L2(Ω)) for fixed positive T .
Moreover, v�t ∈L2(0,∞;L2(Ω)) if f ∈L2(0,∞;L2(Ω)) and w ∈H1

0 (Ω).

The theorem proof will use the Laplace transform, which is an isomorphism in
the appropriate sense [1]. After applying the Laplace transform to the equation
from (2.4), the convolution with −µM turns into multiplication by the function
−µM̂ , which is defined on the upper complex half-plane. It will be verified that
such a function is non-negative and bounded on this half-plane. Thus, in the
Laplace image, the density for the homogenized equation from (2.4) is determined
in terms of m plus a non-negative bounded function and, as it were, is spread
over the entire half-plane. In contrast, under the conditions of Theorem 2.2 the
homogenized density is the constant m for sufficiently small µ.

As a consequence of Theorems 2.1 and 2.3, we obtain the following statement
on the convergence of solutions to problem (2.1) for common initial data.

Corollary 2.1. Assume that f ∈L2(0, T ;L2(Ω)), w = 0, and T is fixed. Let u
be a solution to problem (2.1) and v be a solution to problem (2.4). Then

�u− v�2L∞(0,T ;L2(Ωε
1))

+ µ
��u− v + qε∗ (v�t)− gε∗ f

��2
L∞(0,T ;L1(Ωε

0))
→ 0

for ε → 0, where qε and gε are defined as in Theorem 2.1 and 0 < µ ≤ 1.

Passing to the antiderivative of the solution of problem (2.1), we can obtain
a simple convergence statement for the case of general w ∈L2(Ω). Similarly, we
can deduce from Theorem 2.2 the following convergence statement.
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Corollary 2.2. Assume that f ∈L2(0, T ;L2(Ω)),w=0, and T is fixed. Let u be a
solution to problem (2.1) and v0 be a solution to problem (2.4) with µ=0. Then

�u− v0�2L∞(0,T ;L2(Ωε
1))

+ µ �u− v0�2L∞(0,T ;L2(Ωε
0))

→ 0

for ε → 0 and µ → 0.

In conclusion, we note that the set Y0 can have several connected components,
as in the second picture of Fig. 2.1, whose closures do not intersect. Therefore,
problems (2.2) can be considered on several sets, and the integrals in (2.3) are the
sums of the integrals over these sets. In contrast, if Y1 were represented as several
connected sets with disjoint closures (as sets on a torus), then the homogenized
problem would be a multiphase system of equations with convolutions. Such
homogenized problems were received and justified in [22–24].

3. Laplace transform and proofs

To prove the Theorem 2.3, we will use the methods of Laplace transformation,
which is isomorphism for relevant spaces [1]. Briefly, the exact definitions will be
given here. This approach allows you to completely generalize the classic results
for the thermal conductivity problem (problem (2.4) for µ = 0) on problems
with kernels M(t) and R(t), which are defined as elements of the space L1(0,∞).
This approach seems useful for other problems with convolutions, for example,
for equations with fractional derivatives, parabolic transmission problems, and
related problems with symmetric kernels, further details can be found in [8,16,27].

We fix real number ω and define the space L2
ω(0,∞;L2(Ω)) as the set of

functions from the space L2
loc(0,∞;L2(Ω)) for which the quantity

�u�L2
ω(0,∞;L2(Ω)) = �e−ωtu�L2(0,∞;L2(Ω))

is finite. The last equality defines a norm in the space L2
ω(0,∞;L2(Ω)), with

respect to which this space is complete in accordance with [1].
As in [1], let the space Eω(L

2(Ω)) be the set of functions W (z) = W (z1+ iz2)
with values in L2(Ω), which are continuous and holomorphic in the complex half-
plane Cω = {z ∈ C : z = z1 + iz2, z1 > ω}, and for which the quantity

��W
��2
Eω(L2(Ω))

=

ˆ ∞

−∞

��W (ω + iz2)
��2
L2(Ω)

dz2

is finite, where the integral is understood as the mean limit of the integral from K
to −K for K → ∞. The last equality defines the norm for the space Eω(L

2(Ω)).
The next version of the Paley-Wiener theorem was proved in [1].

Theorem 3.1. For fixed ω, the Laplace transform

�w(t) =
ˆ ∞

0
e−z tw(t) dt = W (z)

is a bijective bicontinuous maps of L2
ω(0,∞;L2(Ω)) into Eω(L

2(Ω)).
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In a similar way, we define the spaces Eω(H
1
0 (Ω)) and Eω(H

−1(Ω)), for which
an analogue of Theorem 3.1 also holds. In addition [1], the Laplace transform
commutes with differentiations in space variables x ∈ Ω and maps convolution in
t ∈ (0,∞) to pointwise multiplication with respect to z ∈ C.

We will denote V = �v, Q = �q, G = �g, and F = �f for Laplace transforms of
solutions and data. Applying the Laplace transform to (2.4), we obtain

z (m− µ�M(z))V (z)− div(Λ∇V (z)) = F(z) in Ω, V |∂Ω = 0 (3.1)

for z ∈ C, where

F = (r − µ �R(z))F (z) + (m− µ�M(z))w. (3.2)

For fixed z ∈ C, problem (3.1) is a boundary value problem for an elliptic equation
with complex coefficients in the lower order terms. It is known [1], that the
problem is solvable for all z ∈ C except, perhaps, a discrete subset in C. Here, in
order to prove the solvability of problem (2.4), it will be enough to separate from
this discrete set using a priori estimates with constants independent of z ∈ C0.

The Laplace transform of problems (2.2) have the form

z µm0Q− divy(λ0∇y Q) = µm0 in Y0, Q|Y 1
= 0, (3.3)

z µm0G− divy(λ0∇y G) = µ r0 in Y0, G|Y 1
= 0. (3.4)

Multiplying the first equation in (3.3) by z Q and integrating over Y0, we have
ˆ

Y0

|z Q|2 dy + z µ−1m−1
0

ˆ

Y0

�
λ0∇y Q,∇y Q

�
dy =

ˆ

Y0

z Qdy. (3.5)

Passing to the complex conjugate and using the symmetry of λ0, we obtain
ˆ

Y0

|z Q|2 dy + z µ−1m−1
0

ˆ

Y0

�
λ0∇y Q,∇y Q

�
dy =

ˆ

Y0

z Qdy. (3.6)

Summing up (3.5) and (3.6), for z ∈ C0 by ellipticity of λ0 we get

�zQ�2L2(Y0)
+ z1αµ−1β−1�∇yQ�2L2(Y0)

≤ Re
ˆ

Y0

(zQ) dy ≤
ˆ

Y0

|zQ| dy

≤ �zQ�L2(Y0)|Y0|1/2 ≤ (1/2)�zQ�2L2(Y0)
+ (1/2)|Y0|. (3.7)

Thus, for z ∈ C0 we can conclude that

�zQ�2L2(Y0)
≤ |Y0|. (3.8)

Moreover, it follows from the definitions and equalities in (2.3) that

�M |Y1| =
ˆ

Y0

m0 (zQ(z, y)− 1) dy (3.9)
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and

|�M ||Y1| ≤
ˆ

Y0

m0 |zQ− 1| dy ≤ β �zQ�L2(Y0)|Y0|1/2 + β |Y0| ≤ 2β |Y0|

according to (3.8). Therefore, the function �M is bounded on C0, since it is
directly verified that problem (3.3) is uniquely solvable for each z ∈ C0 and such
a solution is continuous and holomorphic by virtue of the Theorem 3.1 and the
known properties of solutions to problems (2.2), established, for example, in [9].

Similarly, multiplying the first equation in (3.4) by z G, integrating over Y0,
and repeating the above proof, we obtain

| �R ||Y1| ≤
ˆ

Y0

m0 |zG− (r0/m0)| dy ≤ (β + α−1β2) |Y0|.

Let us prove that the functions Re(−z�M) and Re(−�M) are positive on C0.
Multiplying equation (3.3) by zz Q and integrating over Y0, we have

z

ˆ

Y0

z Q(zQ− 1) dy + µ−1m−1
0

ˆ

Y0

�
λ0∇yzQ,∇yzQ

�
dy = 0

and

z

ˆ

Y0

(z Q− 1)(zQ− 1) dy + z

ˆ

Y0

(zQ− 1) dy

+µ−1m−1
0

ˆ

Y0

�
λ0∇yzQ,∇yzQ

�
dy = 0.

Therefore, using definition (3.9), we conclude that

−z�M |Y1| = z
��zQ− 1

��2
L2(Y0)

+ µ−1m−1
0

ˆ

Y0

�
λ0∇yzQ,∇yzQ

�
dy. (3.10)

Similarly, by symmetry of λ0 we can get the following conjugate equality

−z�M |Y1| = z
��zQ− 1

��2
L2(Y0)

+ µ−1m−1
0

ˆ

Y0

�
λ0∇yzQ,∇yzQ

�
dy. (3.11)

Thus, using the summation and ellipticity of λ0, we deduce that

Re(−z�M) > 0, Re(−�M) > 0 for z ∈ C0 (3.12)

by (3.10) and (3.11). Here, to check the last inequality, one should multiply (3.10)
and (3.11) by 1/z = z1/|z|2 − iz2/|z|2 and 1/z = z1/|z|2 + iz2/|z|2, respectively.
In addition, it should be taken into account that the equality zQ = 1 cannot hold
on Y0 for z ∈ C0, since zQ = 0 on the boundary ∂Y0 by the definition.

Multiplying equation (3.1) by V and integrating over Ω, we have

z(m− µ�M)

ˆ

Ω
|V |2 dx+

ˆ

Ω
(Λ∇V,∇V ) dx =

ˆ

Ω
FV dx.
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Passing to the complex conjugate and using the symmetry of Λ, we obtain

z(m− µ�M)

ˆ

Ω
|V |2 dx+

ˆ

Ω
(Λ∇V,∇V ) dx =

ˆ

Ω
FV dx.

Summing up the equalities, for z ∈ C0 by ellipticity of Λ and (3.12) we get

z1α �V �2L2(Ω) + α �V �2H1
0 (Ω) ≤ Re

ˆ

Ω
(FV ) dx ≤ �F �H−1(Ω)�V �H1

0 (Ω)

and

α �V �H1
0 (Ω) ≤ �F �H−1(Ω)

≤
�
β + (β + α−1β2) |Y0| |Y0|−1

� �
�w �H−1(Ω) + �F �H−1(Ω)

�

by definition (3.2), since m, r, �M , and �R are bounded and µ ≤ 1.
In fact, we obtain the following statement.

Lemma 3.1. For every z ∈ C0, f ∈ L2(0,∞;H−1(Ω)) and w ∈ H−1(Ω), the
unique solution V ∈ H1

0 (Ω) to problem (3.1) exists and there is a positive con-
stant C depending only on α, β, |Y0|, and |Y1|, such that

�V �H1
0 (Ω) ≤ C

�
�F�H−1(Ω) + �w�H−1(Ω)

�
. (3.13)

The solution to problem (3.1) has some additional properties. Namely, as
in [24] the continuity of the solution is valid according to the following assertion.

Lemma 3.2. The solution V = V (z) to problem (3.1) is continuous on C0.

Proof. We fix z0 ∈ C0 and let z → z0. We introduce the notation

P (z) = z(m− µ�M(z)).

In the case, problems (3.1) at points z and z0 can be written in the form

−div(Λ∇V (z)) + P (z)V (z) = F(z), V (z)|∂Ω = 0,

−div(Λ∇V (z0)) + P (z0)V (ρ0) = F(z0), V (z0)|∂Ω = 0.

We also denote V0(z) = V (z)−V (z0). Subtracting the equations above and noting
that P (z0) = P (z) + (P (z0)− P (z)), we obtain

−div(Λ∇V0(z)) + P (z)V0(z) = F(z)− F(z0)− (P (z)− P (z0))V (z0). (3.14)

Thus, repeating the proof of inequality (3.13), we have

�V0�H1
0 (Ω) ≤ C �F(z)− F(z0)�H−1(Ω)

+ |P (z)− P (z0)|C �V (z0)�H−1(Ω) → 0

for z → z0, since F(z) and P (z) are continuous by virtue of Theorem 3.1.
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Just as in [24], it is possible to prove that the solution V (z) to problem (3.1)
is holomorphic on C0. Formally, for this it suffices to divide (3.14) by z − z0 and
pass to the limit for z → z0, since F(z) and P (z) are holomorphic. Thus, taking
into account the integrability of F(z) from (3.2) in the sense of the definition of
the space E0(H

−1(Ω)) for w = 0, we deduce the following statement.

Lemma 3.3. Let f ∈ L2(0,∞;H−1(Ω)) and w = 0. Then, the unique solution
v ∈ L2(0,∞;H1

0 (Ω)) to problem (2.4) exists and there is a positive constant C
depending only on α, β, |Y0|, and |Y1|, such that

�v�L2(0,∞;H1
0 (Ω)) ≤ C�f�L2(0,∞;H−1(Ω)).

Using the linearity of problem (2.4), to complete the study of the solvability
of the homogenized problems in convolutions, it remains to consider the case of
arbitrary w and f = 0. In the case, the integrability condition F(z) from (3.2) in
the sense of the definition of the space E0(H

−1(Ω)) is not satisfied in (3.13). But,
one can also use the linearity of problem (2.4) and known estimates from [9].

Thus, consider the following auxiliary problem for the function h = h(t, x):

mh�t − div(Λ∇h) = 0 in Ω× (0,∞),
h
��
t=0

= w in Ω, h = 0 on ∂Ω× (0,∞).
(3.15)

It is known that the unique solution h ∈ L2(0,∞;H1
0 (Ω)) of this problem exists

and h�t ∈ L2(0,∞;H−1(Ω)). Indeed, multiplying the equation of problem (3.15)
in L2(Ω) by h and following [9], we obtain

�
m

ˆ

Ω
|h|2 dx

��

t

+ 2

ˆ

Ω
(Λ∇h,∇h ) dx = 0.

Integrating this equality over time variable τ ∈ (0, t), we conclude that

α �h(t)�2L2(Ω) + 2α

ˆ t

0
�h�2H1

0 (Ω) dτ ≤ β �w�2L2(Ω).

Thus, passing to the limit with respect to t, we have h ∈ L2(0,∞;H1
0 (Ω)).

Therefore, the solution to problem (3.15) satisfies the inclusion

mh�t = div(Λ∇h) ∈ L2(0,∞;H−1(Ω)).

Under the assumptions that f = 0, we introduce the notation s = v− h, where v
and h are solutions to (2.4) and (3.15). Then s is a solution to the problem

ms�t − µM ∗ (s�t) − div(Λ∇s) = µM ∗ (h�t) in Ω× (0,∞),
s
��
t=0

= 0 in Ω, s = 0 on ∂Ω× (0,∞).
(3.16)

Thus, repeating the proof of Lemma 3.3, we have the following statement.
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Lemma 3.4. For f = 0 and w ∈L2(Ω), the solution v∈L2(0,∞;H1
0 (Ω)) to prob-

lem (2.4) exists and is unique. Moreover, there is a positive constant C depending
only on α, β, |Y0|, and |Y1|, such that

�v�L2(0,∞;H1
0 (Ω)) ≤ C �w�L2(Ω).

Proof of Theorem 2.3. By virtue of Lemmas 3.3 and 3.4, it is necessary to prove
that v�t ∈ L2(0,∞;H−1(Ω)). For arbitrary f and w from Theorem 2.3, we rewrite
problem (3.1) in the form: V = 0 on ∂Ω and

m
�
zV − w

�
=

�
1−m−1µ�M

�−1
��

r − µ �R
�
F + div

�
Λ∇V

��
in Ω, (3.17)

where the function
�
1−m−1µ�M

�−1 is defined, since from (3.8) and (3.12) we get

1 ≤ 1− Re
�
m−1µ�M

�
≤

��1− Re
�
m−1µ�M

���

≤
��1−m−1µ�M

�� ≤ 1 +
��m−1µ�M

�� ≤ 1 + 2α−1
��Y0

����Y1
��−1

.

Consequently, reversing this inequality, we can conclude that
���1−m−1µ�M

�−1�� ≤ 1.

Therefore, the function
�
1−m−1µ�M

�−1 is well defined and bounded on C0.
For f ∈ L2(0,∞;H−1(Ω)) and w ∈ L2(Ω) the right-hand side of the equation

in (3.17) belongs to H−1(Ω) for z ∈ C0 and is integrable in the sense E0(H
−1(Ω)).

In addition, the Laplace transform of the derivative mv�t for the solution to
problem (2.4) coincides with the left-hand side of the equation in (3.17).

Thus, there is a constant C depending only on α, β, |Y0|, and |Y1|, such that

�v�t�L2(0,∞;H−1(Ω)) ≤ C
�
�w�L2(Ω) + �f�L2(0,∞;H−1(Ω))

�
.

We fix a positive T . Then, the following inclusions v ∈ L2(0, T ;H1
0 (Ω)) and

v�t ∈ L2(0, T ;H−1(Ω)) are valid. Thus, from the well-known embedding theorem
given, for example, in [9], we conclude that v ∈ C0([0, T ];L2(Ω)).

Moreover, multiplying equation (3.1) by zV and integrating over Ω, we get

(m− µ�M)

ˆ

Ω
|zV |2 dx+ z

ˆ

Ω
(Λ∇V,∇V ) dx =

ˆ

Ω
F zV dx.

Passing to the complex conjugate and summing up, for every z ∈ C0 we have

α �zV �2L2(Ω) + z1α �V �2H1
0 (Ω) ≤ Re

ˆ

Ω
(F zV ) dx ≤ �F �L2(Ω)�zV �L2(Ω).

Thus, as in the proof of Lemma 3.1 we obtain the following statement.

Lemma 3.5. For every z ∈ C0, f ∈ L2(0,∞;L2(Ω)) and w ∈ L2(Ω), the unique
solution V ∈ H1

0 (Ω) to problem (3.1) exists and there is a positive constant C
depending only on α, β, |Y0|, and |Y1|, such that

�zV �L2(Ω) ≤ C
�
�F�L2(Ω) + �w�L2(Ω)

�
.
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For w = 0 the Laplace transform of v�t for the solution to problem (2.4) is
equal to zV . Thus, as in the proof of Lemma 3.3 we deduce the following assertion.

Lemma 3.6. Let f ∈ L2(0,∞;L2(Ω)) and w = 0. Then, the unique solution
v ∈ L2(0,∞;H1

0 (Ω)) to problem (2.4) exists and v�t ∈ L2(0,∞;L2(Ω)).

For arbitrary w ∈ H1
0 (Ω) and f = 0, we again use the problem (3.15). Multi-

plying the equation of the problem by h
�
t and following [9], we obtain

2m

ˆ

Ω
|h�t|2 dx+

�
ˆ

Ω
(Λ∇h,∇h ) dx

��

t

= 0.

Integrating this equality over time variable τ ∈ (0, t), we conclude that

2α

ˆ t

0
�h�t�2L2(Ω) dτ ≤ β �w�2H1

0 (Ω).

Therefore, passing to the limit with respect to t, we have h�
t ∈ L2(0,∞;L2(Ω)).

Thus, returning to problem (2.4) and using Lemma 3.6, we conclude that there
is a constant C depending only on α, β, |Y0|, and |Y1|, such that

�v�t�L2(0,∞;L2(Ω)) ≤ C
�
�w�H1

0 (Ω) + �f�L2(0,∞;L2(Ω))

�
.

This inequality completes the proof of Theorem 2.3.

Remark 3.1. The last inequality, representation (3.17) and elliptic regularity imply
that v ∈ L2(0,∞;H2(Ω)). In fact, for example, for f ∈ C∞

0 ((0, T )×Ω) and w = 0
one can repeat the proof of Lemma 3.5 and obtain that any time derivative of the
solution is estimated by a suitable time derivative of f . Thus, using successively
the representation (3.17) and elliptic regularity for solutions of problem (2.4), one
can conclude that v ∈ Hσ(0,∞;H2σ(Ω)) for arbitrarily large integers σ.

Proof of Lemma 2.1. As in the proof of (3.15), we multiply the first equation of
problem (2.2) in L2(Y ) by q, then

2α

ˆ t

0
�∇q�2L2(Y ) dτ ≤ µβ �1�2L2(Y0)

. (3.18)

Therefore, passing to the limit with respect to t and using the Poincare inequality,
we have �q�2L2(0,∞;L2(Y)) ≤ Cµ. Similarly, we can obtain the inequality for g.

It is known [3, 5] that these inequalities imply the estimates

�qε�2L2(0,T ;L2(Ω)) + �gε�2L2(0,T ;L2(Ω)) ≤ Cµ (3.19)

for 0 < ε ≤ ε0 with an appropriate ε0, where the constant C may depend on Ω,
qε = q(t, x/ε) and gε = g(t, x/ε) are defined in Theorem 2.1.
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Proof of Theorem 2.2. Using the triangle inequality �a�2 ≤ 2�a−b�2+2�b�2 and
Theorem 2.1, we obtain

�u− v�2C0([0,T ];L2(Ωε
1))

+ µ �u− v�2C0([0,T ];L2(Ωε
0))

≤ C ε+ 2µ
��qε∗ (v�t)− gε∗ f

��2
C0([0,T ];L2(Ω))

.

To estimate the last term, we can use inequality (3.19) and Lemma 4.5 from [24].
In accordance with this lemma, for example, we get

��(qε∗ (v�τ ))(t)
��2
L2(Ω)

≤ �qε�2L2(0,T ;L2(Ω))

��v�t
��2
L2(0,T ;L∞(Ω))

≤ Cµ, (3.20)

since v is sufficiently regular according to [24] or Remark 3.1. Thus, we have

�u− v�2C0([0,T ];L2(Ωε
1))

+ µ �u− v�2C0([0,T ];L2(Ωε
0))

≤ C
�
ε+ µ2

�
,

Under the conditions of the theorem, the solution v0 is sufficiently regular also
and ϕ = v − v0 is the unique regular solution of the following problem

mϕ�
t − div(Λ∇ϕ) = µM ∗ (v�t)− µR ∗ f in Ω× (0,∞),

ϕ
��
t=0

= 0 in Ω, ϕ = 0 on ∂Ω× (0,∞).

Therefore, repeating the proof of Theorem 2.3, we conclude that

�v − v0�2C0([0,T ];L2(Ωε
1))

+ �v − v0�2C0([0,T ];L2(Ωε
0))

≤ C µ2.

To complete the proof of Theorem 2.2, it remains to use the triangle inequality.

Proof of Corollary 2.2. It is known [9] that the set C∞
0 ((0, T )×Ω) is dense in the

separable space L2(0, T ;L2(Ω)). Therefore, for every f ∈ L2(0, T ;L2(Ω)) there is
a sequence {fs}∞s=1 ⊂ C∞

0 ((0, T )× Ω) such that

�f − fs�2L2(0,T ;L2(Ω)) ≤ δs.

Here and below, δs is small enough for sufficiently large s.
For each s, we denote by us the solution of problem (2.1), in which f is

replaced by fs. Under the conditions of the corollary, let us check the following
inequality

�ϕs�2L∞(0,T ;L2(Ωε
1))

+ µ �ϕs�2L∞(0,T ;L2(Ωε
0))

≤ Cδs,

where ϕs = u− us and the constant C does not depend on ε, µ, and s. As in the
proof of (3.15), we multiply by ϕs the equation of problem (2.1) for ϕs, then

�
ˆ

Ω
mµ

ε |ϕs|2dx
��

t

+ 2

ˆ

Ω
(λε∇ϕs,∇ϕs ) dx = 2

ˆ

Ω
rµε ψs ϕsdx,
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where ψs = f − fs. Integrating this equality over time variable τ ∈ (0, t), we get

�ϕs(t)�2L2(Ωε
1)
+ µ �ϕs(t)�2L2(Ωε

0)
≤ 2α−1β �ψs�L1(0,T ;L2(Ωε

1))
�ϕs�L∞(0,T ;L2(Ωε

1))

+ 2α−1β µ1/2�ψs�L1(0,T ;L2(Ωε
0))

µ1/2�ϕs�L∞(0,T ;L2(Ωε
1))

≤ C �ψs�2L2(0,T ;L2(Ω)) + (1/2)�ϕs�2L∞(0,T ;L2(Ωε
1))

+ (µ/2)�ϕs�2L∞(0,T ;L2(Ωε
1))

.

Computing the essential supremum of the inequalities, we obtain exactly the
verifiable inequality.

Similarly, we denote by vs0 the solution of problem (2.4) for µ = 0, in which f
is replaced by fs Then, as in the previous proof, one can conclude that

�v0 − vs0�2L∞(0,T ;L2(Ω)) ≤ Cδs.

For us, the estimate of Theorem 2.2 is satisfied, possibly with a constant
depending on s, but independent of ε and µ. Thus we have, for example, that

µ �u− v0�2L∞(0,T ;L2(Ωε
0))

= µ �u− us + us − vs0 + vs0 − v0�2L∞(0,T ;L2(Ωε
0))

≤ Cδs + 2µ �us − vs0�2L∞(0,T ;L2(Ωε
0))

≤ Cδs + Cs

�
ε+ µ2

�
.

For each positive δ one can choose and fix s so that Cδs < δ/2. By virtue of
the conditions of Corollary 2.2, one can find εδ and µδ such that Cs( ε+µ2 ) < δ/2
for ε < εδ and µ < µδ. Therefore, we get the inequality

�u− v0�2L∞(0,T ;L2(Ωε
1))

+ µ �u− v0�2L∞(0,T ;L2(Ωε
0))

< δ

for all ε < εδ and µ < µδ, which completes the proof by definition.

Proof of Corollary 2.1. We denote by vs the solution of problem (2.4), in which
f is replaced by fs Then, as in the proof of Theorem 2.3, we have

�v − vs�2L∞(0,T ;L2(Ω)) +
��v� − v�s

��2
L2(0,T ;L2(Ω))

≤ Cδs

and the inequality from the previous proof holds.
Thus, we can repeat the previous proof, but with one remark. In the case

under consideration, the inequality (3.20) cannot be applied, since the product
of the functions qε ∈ L2(Ω) and v�t ∈ L2(Ω) may not be defined as a function
from L2(Ω), and therefore the convolution may not be defined. Nevertheless, this
product is defined as an element of the space L1(Ω) and the inequality

��(qε∗ (v�τ ))(t)
��2
L1(Ω)

≤ �qε�2L2(0,T ;L2(Ω))

��v�t
��2
L2(0,T ;L2(Ω))

is valid. Thus, it is possible to write
��(qε∗ (v − vs)

�
τ )(t)

��2
L1(Ω)

≤ C
��v� − v�s

��2
L2(0,T ;L2(Ω))

≤ Cδs

and repeat the previous proof, which completes the proof of all statements.
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