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Abstract. A 1-parameter initial-boundary value problem for a linear spatially 1-dimen-
sional homogeneous degenerate wave equation, posed in a space-time rectangle, in case of
strong degeneracy, was reduced to a linear integro-differential equation of convolution type
(JODEA, 29(1) (2021), pp. 1–31). The former was then solved by applying the Laplace
transformation, and the solution formula was inverted in the form of the Neumann
series. The current study deals with an other approach to the inversion of the solution
formula, based on invoking the Bromwich integral and the Cauchy residue theorem for
the integrand. The denominator of the integrand being an infinite series with respect
to rational functions of the complex variable, converges quite rapidly and can be appro-
ximated with finite series of m terms. Therefore finding the zeros of the approximated
denominator reduces to finding the zeroes of a polynomial of degree 2m. For the resulting
polynomial sequence some numerical approaches have been applied.
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1. Introduction and the problem formulation

The current study supplements our previous publication [1] dealing with the fol-
lowing 1-parameter simplified initial boundary value problem (IBVP) for the de-
generate wave equation in the space-time rectangle [0, T ]× [−1,+1]
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where known control functions h1(t;α), h2(t;α)∈C 1[0, T ]
⋂

C 2(0, T ] obey the com-
patibility conditions: h1(0;α)=

∗
u(+1;α), h ′1(0;α)=

∗∗
u(+1;α), h2(0;α)=

∗
u(−1;α),

and h ′2(0;α)=
∗∗
u(−1;α), and the 1-parameter family of coefficient functions is de-

fined as follows
a(x;α) = |x|α, x ∈ [−1,+1] , (1.2)

the parameter α ∈ (0, 2), and all the dependent and independent variables are
nondimensional. One should refer to [1] to find out more details on the problem
formulation.

In case of strong degeneracy, α ∈ (1, 2), we split the original IBVP (1.1) posed
in the space-time rectangle [0, T ] × [−1,+1] into the derived IBVP2 posed in
the left space-time rectangle [0, T ] × [−1, 0]) and the IBVP1 posed in the right
space-time rectangle [0, T ] × [0,+1]). Then we applied the method of separation
of variables to find families of bounded solutions to the IBVP1 and IBVP2, having
the continuous flux and depending on undetermined functions h3(t;α), h3(t;α)∈
C 1[0, T ]

⋂
C 2(0, T ]. When implementing the continuity condition to the above

families of solutions, we succeeded in deriving a linear integro-differential equa-
tion of convolution type with respect to the difference h(t;α)≡h3(t;α)− h4(t;α)
of the required functions.

To solve the integro-differential equation of convolution type, we applied
the Laplace transformation [3], producing for a function f(t), t∈ [0,∞), its trans-
form as follows

F (τ) = L [f(t)] :=

ˆ ∞
0

f(t) e−τt dt , τ = ξ + iη ∈ C , (1.3)

provided the original function f(t) satisfies the known sufficient conditions for
the image function F (τ) to exist, and obtained for the image H(τ ;α) of the origi-
nal h(t;α) the following expression

∆H(τ ;α) =
R2(τ ;α)−R1(τ ;α)

1 +Q1(τ ;α)
. (1.4)

Generally, for finding the original function, the Bromwich integral

f(t) = L−1 [F (τ)] =
1

2πi

ˆ ξ∗+i∞

ξ∗−i∞
F (τ) e+tτ dτ (1.5)

is used, where < τ = ξ∗ is a vertical straight line lying to the right of all the singu-
larities of F (τ) (see Fig. 1.1, a). Nevertheless, in [1] we succeeded in inverting (1.4)
in the form of the Neumann series. In the current study we will try to satisfy all
the conditions for the application of the Bromwich integral to (1.4). First of all,
this means finding the singularities of the right-hand side of (1.4). But, from
our study [1], we know that the above singularities are nothing but the zeros of
the denominator of the right-hand side of (1.4). So, from this there stems our
concern in finding the zeros of the function 1 +Q1(τ ;α)
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Fig. 1.1. All the singularities of the integrand of the Bromwich integral (1.5) lie in the half-plane
(gray color) to the right of the path of integration τ = ξ∗+ iη, ξ∗=const, η ∈ (−∞,+∞) (dark
blue), or the Bromwich line (a); the oriented Bromwich contour ABCA (light red), consists
of the segment AB of the Bromwich line and the arc BCA of the circle of radius R cen-
tered at the origin; to apply the Cauchy residue theorem, the integrand must vanish at BCA
when R→∞ and all the singularities of the integrand must lie inside ABCA (b)

The current study is organized as follows.
In Sect. 2 we provide the most necessary knowledge of the function Q1(τ ;α)

in (1.4). In Sect. 3 we give the problem formulation. In Sect. 4 we outline in brief
the method of solution. In Sect. 5 we discuss some most important results and
observations.

2. Preliminaries

To clarify the complexity of the problem, we provide here only the most
necessary knowledge of the function Q1(τ ;α) in (1.4). It has the following series
representation w.r.t. rational functions of τ = ξ + iη ∈ C

Q1(τ ;α) = C%

∞∑
µ=1

σ−%1,µ

cµ τ
2 + dµ

τ2 + σ 2
1,µ

, (2.1)

where: 1) the coefficients in the numerators of the rational functions are
cµ = +

1

‖Z1,µ‖2
I2 −

1

‖Z1,µ‖2
I0 ,

dµ = − ϑ

‖Z1,µ‖2
I1 ;

(2.2)
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2) the functions Z1,µ(x;α), |x| ∈ [0, 1], and their norms are defined as follows
Z1,µ(x;α) = |x|

ν
2 J−%

(
s̊ |x|

θ
2

)
=

(
s̊

2

)−% ∞∑
γ=0

(−1)γ |x|γθ

γ! Γ(1− %+ γ)

(
s̊

2

)2γ

,

‖Z1,µ‖2 =

ˆ 1

0
Z2

1,µ(x;α) d|x| = 1

θ
J 2
−%+1(̊s) ;

(2.3)

3) J−%(s) is the Bessel function of the first kind and order −% [14]; 4) s̊ =

s1,µ,
{
s1,µ

}∞
µ=1

is the unbounded monotonically increasing sequence of the zeros
of function J−%(s); 5) ν, θ, %, σ1,µ, and C% are the following α-derived quantities

ν = 1− α , θ = 2− α , % =
ν

θ
=

1− α
2− α

, σ1,µ =
θ

2
s1,µ

, C% =
θ%

Γ(1− %)
;

6) the definite integrals I0, I1, I2 in (2.2) are calculated, applying the variable
transformation

s = s̊ |x|
θ
2 ≡ s1,µ |x|

θ
2 , (2.4)

as follows 

I0 ≡
ˆ 1

0
Z1,µ(x;α) d|x| = 2

θ

(
1

s̊

)o+1

I ∗0 ,

I1 ≡
ˆ 1

0
|x|ω−θ Z1,µ(x;α) d|x| = 2

θ

(
1

s̊

)υ+1

I ∗1 ,

I2 ≡
ˆ 1

0
|x|ωZ1,µ(x;α) d|x| = 2

θ

(
1

s̊

)υ+3

I ∗2 ,

(2.5)

where

ω − θ = 1 + ε , ε > 0 , o =
1

θ
, υ =

2ε+ 3

θ
, ϑ

(2.2)
= ω [ω − θ + 1] . (2.6)

The transformed integrals in (2.5)

I ∗0 =

ˆ s̊

0
so J−%(s) ds ,

I ∗1 =

ˆ s̊

0
sυ J−%(s) ds ,

I ∗2 =

ˆ s̊

0
sυ+2 J−%(s) ds ,

(2.7)

are calculated exactly, invoking the following recurrence formula [14] (see Sect. 7)

s−%+1J−%(s) =
[
s−%+1J−%+1(s)

]′
. (2.8)
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Thus, for the first integral (2.7) we have

I ∗0 =

ˆ s̊

0
so J−%(s) ds =

ˆ s̊

0
s−%+1 J−%(s) ds = s̊−%+1 J−%+1(̊s) , (2.9)

whereas for the second and thirds integrals (2.7), the recurrence formula [14]
is applicable provided that proper values of the free parameter ε are taken as posi-
tive values produced by the formula [1]

ε = −1 + k θ, k ∈ N . (2.10)

3. Problem formulation

The series (2.1), representing the analytic function Q1(τ ;α), converges quite
rapidly in the whole plane τ=ξ+ iη ∈ C, except for the simple poles τ∓µ =∓ iσ1,µ,
lying on the imaginary axis of the plane C . Therefore we approximate the func-
tion Q1(τ ;α) with the following finite series

Qm(τ ;α) = C%

m∑
µ=1

σ−%1,µ

cµ τ
2 + dµ

τ2 + σ 2
1,µ

, (3.1)

and pose the problem of finding the zeros of the function 1 +Qm(τ ;α) instead of
finding the zeros of denominator of (1.4).

It is evident that the singular points τ∓µ do not contribute to the required set of
the zeros of the function 1+Qm(τ ;α), hence w.l.o.g. we can neglect of these points,
by multiplying the function 1 +Qm(τ ;α) by the product of the denominators of
the rational functions in (3.1), to obtain the following polynomial of order 2m

P2m(τ ;α) ≡
m∏
γ=1

(
τ2 + σ 2

1,γ

) (
1 +Qm(τ ;α)

)

=
m∏
γ=1

(
τ2 + σ 2

1,γ

)
+ C%

∞∑
µ=1

[
σ−%1,µ

m∏
γ=1
γ 6=µ

(
τ2 + σ 2

1,γ

) (
cµ τ

2 + dµ

)]
,

(3.2)

being an analytic function in the whole plane τ ∈ C .
Based on the above transformation, we pose the following equivalent problem,

to find the zeros of the polynomial P2m(τ ;α) (3.2). According to the fundamental
theorem of algebra, the above polynomial of order 2m has exactly 2m zeros,
therefore, our concern is finding all 2m zeros of (3.2) and studying their dependence
on m. To his end, we shall consider the sequences of the functions 1 + Qm(τ ;α)
and the polynomials P2m(τ ;α).
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4. Method of solution

There are known a lot of techniques to find zeros of analytic functions, in parti-
cular, polynomials, in a region Ω, for example [5, 8, 9]. We choose a simple and
robust method [8], and refer a reader to [8] for the details. Here, we only briefly
outline the principal steps of the method:

1) covering the region Ω of interest with a triangular mesh;
2) evaluating the function for each nodal point of the mesh;
3) approxamating the function on each triangle by a bilinear function;
4) constructing piece-wise linear pairs of curves CR,m={τ ∈ Ω : Um(t;α) = 0}

and CI,m = {τ ∈ Ω : Vm(t;α) = 0} for Qm(t;α), CR,2m = {τ ∈ Ω : U2m(t;α) = 0}
and CI,2m={τ ∈ Ω : V2m(t;α) = 0} for P2m(t;α), where

1 +Qm(τ ;α) = Um(τ ;α) + iVm(τ ;α) , (4.1)

P2m(τ ;α) = U2m(τ ;α) + iV2m(τ ;α) ; (4.2)

5) storing the points where the curves CR,m and CI,m, CR,2m and CI,2m cross;
6) refining the mesh if it is needed and repeating the above steps.
We choose a rectangular region Ω, cover it with a rectangular grid, and then

divide each rectangular cell of the grid into two triangular subcells.
When evaluating Bessel functions of the first kind and non-integer orders and

finding their zeros, we used algorithms [2, 12].

5. Numerical results

We present here numerical results for the following case

α =
5

4
⇒ ν = −1

4
, θ =

3

4
, % = −1

3
, ε =

1

2
, o =

4

3
, υ =

16

3
.

The first integral of (2.7), accordingly to (2.9), equals

I ∗0 =

ˆ s̊

0
so J−%(s) ds =

ˆ s̊

0
s

4
3 J 1

3

(s) ds =

ˆ s̊

0

[
s

4
3 J 4

3

(s)
]′

ds = s̊
4
3 J 4

3

(̊s) , (5.1)

whereas the second and third integrals of (2.7), due to (2.8), yield to

I ∗1 =

ˆ s̊

0
sυ J−%(s) ds =

ˆ s̊

0
s

16
3 J 1

3

(s) ds =

ˆ s̊

0
s4
[
s

4
3 J 4

3

(s)
]′

ds

= s̊4 s̊
4
3 J 4

3

(̊s)− 4

ˆ s̊

0
s2
[
s

7
3 J 7

3

(s)
]′

ds

= s̊
16
3 J 4

3

(̊s)− 4 s̊2 s̊
7
3 J 7

3

(̊s) + 8

ˆ s̊

0

[
s

10
3 J 10

3

(s)
]′

ds

= s̊
16
3 J 4

3

(̊s)− 4 s̊
13
3 J 7

3

(̊s) + 8 s̊
10
3 J 10

3

(̊s) ,

(5.2)
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I ∗2 =

ˆ s̊

0
sυ+2 J−%(s) ds =

ˆ s̊

0
s

22
3 J 1

3

(s) ds =

ˆ s̊

0
s6
[
s

4
3 J 4

3

(s)
]′

ds

= s̊6 s̊
4
3 J 4

3

(̊s)− 6

ˆ s̊

0
s4
[
s

7
3 J 7

3

(s)
]′

ds

= s̊
22
3 J 4

3

(̊s)− 6 s̊4 s̊
7
3 J 7

3

(̊s) + 24

ˆ s̊

0
s2
[
s

10
3 J 10

3

(s)
]′

ds

= s̊
22
3 J 4

3

(̊s)− 6 s̊
19
3 J 7

3

(̊s) + 24 s̊2 s̊
10
3 J 10

3

(̊s)− 48

ˆ s̊

0

[
s

13
3 J 13

3

(s)
]′

ds

= s̊
22
3 J 4

3

(̊s)− 6 s̊
19
3 J 7

3

(̊s) + 24 s̊
16
3 J 10

3

(̊s)− 48 s̊
13
3 J 13

3

(̊s) .

(5.3)

Substituting the above integrals (5.1), (5.2), (5.3) into (2.5) yields to

I0 =
8

3

1

s̊4

[̊
s3 J 4

3

(̊s)
]
,

I1 =
8

3

1

s̊4

[̊
s3 J 4

3

(̊s)− 4 s̊2 J 7
3

(̊s) + 8 s̊ J 10
3

(̊s)
]
,

I2 =
8

3

1

s̊4

[̊
s3 J 4

3

(̊s)− 6 s̊2 J 7
3

(̊s) + 24 s̊ J 10
3

(̊s)− 48 J 13
3

(̊s)
]
,

and eventually to the coefficients (2.2)

cµ = +
2

s̊4J2
4
3

(̊s)

[̊
s3 J 4

3

(̊s)− 6 s̊2 J 7
3

(̊s) + 24 s̊ J 10
3

(̊s)− 48 J 13
3

(̊s)
]

− 2

s̊4J2
4
3

(̊s)

[̊
s3 J 4

3

(̊s)
]
,

dµ = − 15

s̊4J2
4
3

(̊s)

[̊
s3 J 4

3

(̊s)− 4 s̊2 J 7
3

(̊s) + 8 s̊ J 10
3

(̊s)
]
.

First, we applied the method of finding the zeros, outlined briefly in Sect. 4,
to the sequence of the functions 1+Qm(t;α) (3.1) and presented numerical results
in Fig. 7.2 and 7.3. Then, we studied the sequence of the polynomials P2m(t;α) (3.2)
and presented numerical results in Fig. 7.4 and 7.5.

Contrary to our expectations, we could not succeed in comparing the obtained
results for both sequences, since the number and position of zeros in Figs. 7.2,
7.3 and Figs. 7.4, 7.5 differ significantly. Careful examination of the surface plots
for Um(t;α), Vm(t;α), |1+Qm(t;α)|, U2m(t;α), V2m(t;α), and |P2m(t;α)| revealed
that the difference surely originated from the Gibbs phenomenon for the expan-
sions of blending functions, used in [1], in series involving Bessel functions of
the first kind. In the current study the Gibbs phenomenon manifested itself
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through the coefficients (2.2). Nevertheless, the Gibbs phenomenon did not mani-
fest itself in the problem of finding the zeros of the polynomials P2m(t;α). We think
the reason for this is that the polynomials grow rapidly with distance from
the point τ = 0, whereas the Gibbs phenomenon is negligibly small compared to
this growth to produce false zeros and avoid the convergence of the zeros. Indeed,
from Fig. 7.4 one could suppose, that when the order of the polynomials increases,
the previously found zeros converge, that is their positions stop changing. Fig. 7.5
proved that the above assumption is correct.

Studying Figs. 7.2, we could not distinguish between correct and false zeros.
Fortunately, for the case being discussed, the polynomial sequence gave the correct
positions of the zeros for quite enough very-high orders, therefore we could succeed
in separating the false zeros from the correct ones in Figs. 7.2, and 7.3. But
generally, increasing the order of the polynomials eventually leads rapidly to over-
flow errors. Therefore, finding the zeros of the sequence of the functions 1 +
Qm(t;α) needs proper curing. We believe that the method of Sect. 4 supplemented
by some approaches, for example [4, 6, 7, 10], to the suppression of the Gibbs
phenomenon, will work correctly.

6. Conclusions

In the current study we tried to estimate the possibility of using the Bromwich
integral (1.5) for inverting (1.4), considering some approaches and some particular
cases of the IBVP (1.1).

1. Approxamating the function Q1(τ ;α) (2.1) by finite series Qm(τ ;α) (3.1)
simplifies the problem of finding zeros of the denominator 1 + Q1(τ ;α) of (1.4),
but, unfortunately, finite series Qm(τ ;α) have happened to be very sensitive to
the Gibbs phenomenon to produce false zeros.

2. Reducing the problem of finding the zeros of the functions 1 + Qm(τ ;α)
to the problem of finding the zeros of the polynomials P2m(τ ;α) (3.2) avoids
producing the false zeros, demonstrate convergence of the zeros, but generally
could lead to overflow errors.

7. Corrections

1. In the expressions following (3.5) on p. 18 [1], σ−%%,µ should be replaced
with σ−%1,µ.

2. In the expression for I ∗2 on p. 28 [1], J 5
3

(̊s) should be replaced with Z 5
3

(̊s).
3. A generic notation Z%(s) introduced in Sect. 2.1 [1], revealed to be fragile

in Appendix [1], since it implied that % not only as the index of Z%(s) should
be treated as ∓% for the Bessel functions J∓%(s) of the first kind and orders ∓%,
respectively, but also as the exponents of the powers of s̊. Sometimes this implica-
tion could lead to confusion. In Sects. 2, 3 and 5 we replaced this generic notation
with explicit denoting the order of the Bessel functions and the exponents of
the powers of s̊.
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Fig. 7.2. The rectangular region [−2.5,+2.5] × [0.0, 25.0] ∈ C in which the lines of zero
values of the real Um(τ ;α) (red color) and the imaginary Vm(τ ;α) (blue color) parts (4.1)
of the functions 1 + Qm(τ ;α) (3.1) are drawn: m = 5 (a), m = 10 (b), m = 15 (c),
m = 20 (d). Singular points of the function Q1(τ ;α) (2.1) and the correct and false zeros
of functions Qm(τ ;α) are labeled as black and white discs, and white diamonds respectively
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Fig. 7.3. The rectangular region [−2.5,+2.5] × [0.0, 25.0] ∈ C in which the lines of zero
values of the real Um(τ ;α) (red color) and the imaginary Vm(τ ;α) (blue color) parts (4.1)
of the functions 1 + Qm(τ ;α) (3.1) are drawn: m = 35 (g), m = 40 (h), m = 45 (i),
m = 50 (j ). Singular points of the function Q1(τ ;α) (2.1) and the correct and false zeros
of functions Qm(τ ;α) are labeled as black and white discs, and white diamonds respectively
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Fig. 7.4. The rectangular region [−2.5,+2.5]× [0.0, 25.0] ∈ C in which the lines of zero values
of the real U2m(τ ;α) (red color) and the imaginary V2m(τ ;α) (blue color) parts (4.2) of
the polynomials P2m(τ ;α) (3.2) are drawn: m=5 (a), m=10 (b), m=15 (c), m=20 (d).
Singular points of the function Q1(τ ;α) (2.1) and the zeros of polynomials P2m(τ ;α) are
labeled as black and white discs, respectively
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Fig. 7.5. The rectangular region [−2.5,+2.5]× [0.0, 25.0] ∈ C in which the lines of zero values
of the real U2m(τ ;α) (red color) and the imaginary V2m(τ ;α) (blue color) parts (4.2) of
the polynomials P2m(τ ;α) (3.2) are drawn: m=35 (g), m=40 (h), m=45 (i), m=50 (j ).
Singular points of the function Q1(τ ;α) (2.1) and the zeros of polynomials P2m(τ ;α) are
labeled as black and white discs, respectively
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